AstroParticle Symposium 2023

Status of the O4 run of LIGO/Virgo/KAGRA

Tito Dal Canton

VIR-1037A-23

Ground-based gravitational-wave detectors

Highlights from the previous observing runs

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Highlights from the previous observing runs

Binary black holes

Binary neutron stars

Mixed binaries

"Surprises": low-mass BHs (GW190814), high-mass BHs (GW190521)

Highlights from the previous observing runs

Black hole population properties

Cosmology

Timeline of observing runs

Updated 2023-10-11	— 01	— 02	— O3	— O4	O 5	
LIGO	80 100 Мрс Мрс		100-140 Мрс	150 160+ Mpc	240-325 Mpc	
Virgo		30 Мрс	40-50 Мрс	40-80 Mpc	150-260 Мрс	
KAGRA			0.7 Mpc	1-3 ≃10 ≳10 Mpc Mpc Mpc	25-128 Мрс	
G2002127-v21 20	 015 2016	I I 2017 2018 2	 019 2020 2021	2022 2023 2024 2025 2026 20	 27 2028 2029	

Sensitivity improvements at low frequencies

• Stray light baffles

Sensitivity improvements at high frequencies

- New laser amplifier
- Removed point absorbers from mirrors

Broadband sensitivity improvements

- Frequency dependent squeezing
- Adaptive mode matching
- Low-loss faraday isolator

Virgo detector upgrades

Impact on detector sensitivity

LIGO Hanford LIGO Livingston Virgo

Early-warning alerts for low-mass compact binary inspirals (Magee+ 2021).

Kafka-based alert distribution (via GCN and SCiMMA).

Lower-significance candidates (FAR < 2/day).

Extra details about each candidate visible on GraceDB (multiple FARs).

Restructuring of the "rapid response team": large pool of rapid "non experts" plus smaller pool of experts when needed.

Minor changes to the formatting of the alerts (e.g. HasMassGap).

Automatic parameter estimation for compact binaries.

Low-latency (preliminary) detections in O4

~60 compact binary mergers identified so far.

Most of those consistent with binary black hole mergers.

A few might be neutron-star–black-hole mergers! Looking into those with more precise analyses.

No definite binary neutron star mergers yet.

Sky localizations limited by the lack of a third sensitive detector.

Very active campaigns to search for counterparts (electromagnetic and neutrinos).

12 retracted alerts: doing better than O3 so far.

Low-latency (preliminary) detections in O4

<u>S230627c</u>

Best localized compact binary merger so far.

Likely a binary black hole merger.

~300 Mpc.

What to do between O5 (~2028) and 3G (late 2030s)?

- Push existing infrastructure to their limits.
- Prepare the technology for 3G detectors.

Concepts:

- LIGO A#, Voyager (<u>LSC, 2022</u>)
- Virgo_nEXT

Ideas for improvements:

- Larger test masses (e.g. 40 kg \rightarrow 100 kg)
- Improved seismic isolation and suspensions
- Higher arm cavity power (e.g. 1.5 MW)
- Increased squeezing

O4 started after a long hiatus in observations.

A few compact binary mergers detected each week now. Yet to see a definitive multimessenger event, but looking very actively.

Offline analyses underway for compact binaries and other types of signals.

Two-month break planned in early 2024, followed by three-detector observations again.

Stay tuned: gwosc.org, gracedb.ligo.org, Open LVKEM wiki.

Many of us are working on future detectors.

Thank you for the attention!

Timeline of observing runs

	01	C)2 💻	03		04		05		
LIGO	80 Мрс	100 Мрс	11	0-130 Mpc		160- ⁻ Mp	190 c		Tai 330	rget Mpc
Virgo		30 Мрс	N	50 /pc		90-1 Mp	20 c		150 M	-260 pc
KAGRA				8-25 Mpc	5	25-13 Mp	30 C		13 M	80+ Ipc
LIGO-India									Tar 330	get Mpc
2015	2016	2017 2018	8 2019	1 2020	2021	2022	2023	2024	2025	1 2026

Timeline of observing runs

Early-warning detection of an inspiral

Preliminary GCN notice

TITLE: GCN/LVC NOTICE NOTICE_DATE: Mon 14 Aug 23 23:09:31 UT NOTICE TYPE: LVC Preliminary TRIGGER NUM: S230814ah TRIGGER_DATE: 20170 TJD; 226 DOY; 2023/08/14 (yyyy/mm/dd) TRIGGER TIME: 83341.000000 SOD {23:09:01.000000} UT SEQUENCE_NUM: 1 $GROUP_TYPE: 1 = CBC$ SEARCH_TYPE: 1 = AllSky PIPELINE_TYPE:4 = gstlal FAR: 1.847e-21 [Hz] (one per 6265940369012569.0 days) (one per 17166959915102.93 vears) PROB_NS: 0.00 [range is 0.0-1.0] PROB_REMNANT: 0.00 [range is 0.0-1.0] PROB_BNS: 0.00 [range is 0.0-1.0] PROB_NSBH: 0.00 [range is 0.0-1.0] 1.00 [range is 0.0-1.0] PROB_BBH: PROB MassGap: 0.00 [range is 0.0-1.0] PROB_TERRES: 0.00 [range is 0.0-1.0] TRIGGER_ID: 0x10 MISC: 0x1898402 SKYMAP_FITS_URL: https://gracedb.ligo.org/api/superevents/S230814ah/files/bayestar.multiorder.fits,1 EVENTPAGE URL:https://gracedb.ligo.org/superevents/S230814ah/view/ LVC Preliminary Trigger Alert. COMMENTS: COMMENTS: This event is an OpenAlert. LIGO-Livingston Observatory contributed to this candidate event. COMMENTS:

TITLE: GCN/LVC NOTICE NOTICE_DATE: Mon 14 Aug 23 23:59:39 UT NOTICE TYPE: LVC Initial Skymap TRIGGER NUM: S230814ah TRIGGER_DATE: 20170 TJD; 226 DOY; 2023/08/14 (yyyy/mm/dd) TRIGGER TIME: 83341.000000 SOD {23:09:01.000000} UT SEQUENCE_NUM: 3 $GROUP_TYPE: 1 = CBC$ SEARCH_TYPE: 1 = AllSky PIPELINE_TYPE:4 = gstlal FAR: 1.847e-21 [Hz] (one per 6265940369012569.0 days) (one per 17166959915102.93 years) PROB_NS: 0.00 [range is 0.0-1.0] PROB_REMNANT: 0.00 [range is 0.0-1.0] PROB_BNS: 0.00 [range is 0.0-1.0] PROB_NSBH: 0.00 [range is 0.0-1.0] 1.00 [range is 0.0-1.0] PROB_BBH: PROB MassGap: 0.00 [range is 0.0-1.0] PROB_TERRES: 0.00 [range is 0.0-1.0] TRIGGER_ID: 0x10 MISC: 0x3898602 SKYMAP_FITS_URL: https://gracedb.ligo.org/api/superevents/S230814ah/files/bayestar.multiorder.fits,2 EVENTPAGE URL:https://gracedb.ligo.org/superevents/S230814ah/view/ LVC Super Initial Skymap -- a location probability map. COMMENTS: COMMENTS: This event is an OpenAlert. LIGO-Livingston Observatory contributed to this candidate event. COMMENTS:

Skymap update GCN notice

TITLE: GCN/LVC NOTICE NOTICE_DATE: Tue 29 Aug 23 21:42:37 UT NOTICE TYPE: LVC Update Skymap TRIGGER NUM: S230814ah TRIGGER_DATE: 20170 TJD; 226 DOY; 2023/08/14 (yyyy/mm/dd) TRIGGER TIME: 83341.000000 SOD {23:09:01.000000} UT SEQUENCE_NUM: 4 $GROUP_TYPE: 1 = CBC$ SEARCH_TYPE: 1 = AllSky PIPELINE_TYPE:4 = gstlal FAR: 1.847e-21 [Hz] (one per 6265940369012569.0 days) (one per 17166959915102.93 vears) PROB_NS: 0.00 [range is 0.0-1.0] PROB_REMNANT: 0.00 [range is 0.0-1.0] PROB_BNS: 0.00 [range is 0.0-1.0] PROB_NSBH: 0.00 [range is 0.0-1.0] 1.00 [range is 0.0-1.0] PROB_BBH: PROB MassGap: 0.00 [range is 0.0-1.0] PROB_TERRES: 0.00 [range is 0.0-1.0] TRIGGER_ID: 0x10 MISC: 0x4898602 SKYMAP_FITS_URL: https://gracedb.ligo.org/api/superevents/S230814ah/files/Bilby.offline0.multiorder.fits EVENTPAGE_URL:https://gracedb.ligo.org/superevents/S230814ah/view/ LVC Super Updated Skymap -- a location probability map. COMMENTS: COMMENTS: This event is an OpenAlert. LIGO-Livingston Observatory contributed to this candidate event. COMMENTS:

Initial GCN circular

Subject: LIGO/Virgo/KAGRA S230814ah: Identification of a GW compact binary merger candidate Date: 2023-08-15T00:04:16Z (3 months ago) From: 최소연 <<u>choisy4044@qmail.com</u>> Via: Web form

The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration report:

We identified the compact binary merger candidate S230814ah during real-time processing of data from LIGO Livingston Observatory (L1) at 2023-08-14 23:09:01.810 UTC (GPS time: 1376089759.810). The candidate was found by the GstLAL [1] analysis pipeline.

S230814ah is an event of interest because its false alarm rate, as estimated by the online analysis, is 1.8e-21 Hz, or about one in 1e13 years. The event's properties can be found at this URL:

https://gracedb.ligo.org/superevents/S230814ah

The classification of the GW signal, in order of descending probability, is BBH (>99%), Terrestrial (<1%), BNS (<1%), or NSBH (<1%).

Assuming the candidate is astrophysical in origin, the probability that the lighter compact object is consistent with a neutron star mass (HasNS) is <1%. [2] Using the masses and spins inferred from the signal, the probability of matter outside the final compact object (HasRemnant) is <1%. [2] Both HasNS and HasRemnant consider the support of several neutron star equations of state. The probability that either of the binary components lies between 3 and 5 solar masses (HasMassgap) is <1%.

Two sky maps are available at this time and can be retrieved from the GraceDB event page:

* bayestar.multiorder.fits,1, an initial localization generated by BAYESTAR [3], distributed via GCN notice about 27 seconds after the candidate event time.

* bayestar.multiorder.fits,2, an initial localization generated by BAYESTAR [3], distributed via GCN notice about 5 minutes after the candidate event time.

The preferred sky map at this time is bayestar.multiorder.fits,2. For the bayestar.multiorder.fits,2 sky map, the 90% credible region is 24222 deg2. Marginalized over the whole sky, the a posteriori luminosity distance estimate is 405 +/- 124 Mpc (a posteriori mean +/- standard deviation).

For further information about analysis methodology and the contents of this alert, refer to the LIGO/Virgo/KAGRA Public Alerts User Guide https://emfollow.docs.ligo.org/userguide/.

[1] Tsukada et al. arXiv:2305.06286 (2023) and Ewing et al. arXiv:2305.05625 (2023)

[2] Chatterjee et al. ApJ 896, 54 (2020)

^[3] Singer & Price PRD 93, 024013 (2016)