An investigation into the absence of detected VHE emission from GRBs prior to 2018

Halim Ashkar, Aurélie Sangaré, Stephen Fegan

Jean Damascene Mbarubucyeye, Edna Ruiz-Velasco, and Sylvia J. Zhu

AstroParticle Symposium 2023 Paris – Saclay

The VHE GRB spectrum - From 2002 to 2018

- H.E.S.S. I: 2002-2012
- H.E.S.S. II: 2012- present
- MAGIC I: 2009 2012
- MAGIC II: 2012- Present
- VERITAS I: 2007-2012
- VERITAS II : 2012 Present

Hundreds of observations Detections > 100 GeV:

- GRB130427A: 90 GeV photon Fermi-LAT
- Nothing else during 16 years

The VHE GRB spectrum - From 2018 to 2019

From 2018 to 2019

GRB 180720B: 100 GeV – 440 GeV GRB 190114C: 300 Gev – 100 TeV GRB 190829A: 200 GeV – 3 TeV

A retrospective study of Swift gamma-ray bursts visibility for IACTs 2004 - 2022

- Maximum allowed zenith angle $60 \deg$ Field of view $2 \deg$ Maximum allowed observation delay 24 hours Maximum Sun altitude -16 deg Maximum Moon Phase 40%Maximum Moon altitude $65 \deg$ Minimum Moon-source separation $45 \deg$ Maximum Moon-source separation $145 \deg$ Minimum observation duration 6 minutes
- Redshift measurement
- > 2 X-ray points with Swift-XRT

Methodology: assumptions

We want to **INDEPENDENTLY** predict the VHE gamma-ray emission of all these GRBs and check if this VHE gamma-ray emission is detectable by IACTs using real-time observation conditions.

- <u>Spectral shape:</u> Power law with $\gamma = 2$
- <u>Emission level:</u> $\phi(u)_{\gamma (0.2-3 \text{ TeV})} \times F \equiv \phi(u)_{X (0.2-10 \text{ KeV})}$ with F between 1-3
- <u>Temporal decay</u>: Power law decay with $\alpha_{\gamma} = \alpha_{X}$

Set the VHE gamma-ray intrinsic emission $\varphi(u)_{\gamma}$

Methodology: Telescope response

EBL absorption: $\varphi(e)_{\gamma} = \varphi(u)_{\gamma} e^{-\tau (E,z)}$

Set the gamma-ray emission reaching Earth $\varphi(e)_{\gamma}$

Effective area | Energy bounds | Background rates $\leftarrow \rightarrow$ zenith angle

IACT	E_1 (TeV)	E_2 (TeV)	Reference for eff. area	α	Bkg. rate (Hz)	Zenith (deg)
H.E.S.S. I	0.2	4	H.E.S.S. collaboration et al. (2006)	0.14	0.0865	45
H.E.S.S. II	0.1	4	Holler et al. (2015)	0.08278	0.1287	45
H.E.S.S. MONO	0.1	4	Holler et al. (2015)	0.102	0.0837	45
VERITAS I	0.2	4	https://veritas.sao.arizona.edu	0.14	0.07951	20
VERITAS II	0.2	4	https://veritas.sao.arizona.edu	0.14	0.1101	20
MAGIC I	0.1	4	Aleksić et al. (2012)	0.2	1.125	< 30
MAGIC II	0.1	4	Aleksić et al. (2016)	0.2	0.64	< 30

Methodology: Telescope signal

Validation

- GRB 190829A
 - Using the time window as reported in the H.E.S.S. paper we get 20.9 σ for N_{ON} = 682 (reported value is 21.7 σ)
 - $\gamma = 2.0 \rightarrow \gamma = 2.5$: 18.4 σ for N_{ON} = 621
 - Doubling the background rate lowers the significance to 16.5σ
 - Doubling the background rate for the $\gamma = 2.5$ case reduces the significance to 14.2σ
- GRB 180720B
 - 2.6 σ (reported value is 5.3 σ)
 - *standard* vs. *loose* cuts

Preliminary results

For H.E.S.S.: GRB 060904B, 080605, 100621A, 100814A, 130925A, 131030A, 161219B, 180720B, 190829A and 210721A.

For MAGIC: GRB 060904B, 080605, 090112, 090417B, 101225A, 130430A,131030A, 190829A and 210619B.

For VERITAS: GRB 060218, 090618, 120729A and 190829A

- Take a deeper look into the X-ray curve
- 1^{st} case: > 2000 seconds
- 2nd case: entire observation window

Results

RELIMINARY

Г

				.		
GRB Name	z Time		Obs. delay	Obs. duration	$\sigma > 2000 s$ (full)	$\sigma > 2000 s$ (full)
		(UTC)	(s)	(s)	H.E.S.S. II	H.E.S.S. I
GRB060904B	0.7029	2006-09-04T02:31:03	26.0	5045.0	<1 (1.8)	$<\!1~(<\!1)$
GRB100621A	0.542	2010-06-21T03:03:32	40.0	4733.0	2.4(19.6)	< 1 (5.7)
GRB130925A	0.348	2013-09-25T04:11:24	60115.0	5303.0	2.4(2.4)	1.0(1.0)
GRB131030A	1.293	2013-10-30T20:56:18	27.0	8313.0	< 1 (2.0)	<1 (<1)
GRB161219B	0.1475	2016-12-19T18:48:39	388.0	11899.0	$11.5 \ 12.1$	7.7(8.0)
GRB180720B	0.654	2018-07-20T14:21:44	35209.0	15302.0	2.5~(2.5)	<1 (<1)
GRB190829A	0.0785	2019-08-29T19:56:44	12179.0	16817.0	31.5 (31.5)	24.6(24.6)

GRB Name	\mathbf{Z}	Time	Obs. delay	Obs. duration	$\sigma > 2000 s$ (full)	$\sigma > 2000 s$ (full)
		(UTC)	(s)	(s)	MAGIC II	MAGIC I
GRB090417B	0.345	2009-04-17T15:20:03	11456.0	20150.0	2.0(2.0)	1.2(1.2)
GRB101225A	0.847	2010-12-25T18:37:45	1124.0	5622.0	4.9(5.4)	3.9(4.9)
GRB130427A	0.3399	2013-04-27T07:47:57	39056.0	2424.0	2.0(2.0)	1.0(1.0)
GRB190829A	0.0785	2019-08-29T19:56:44	14906.0	11363.0	9.7 (9.7)	6.5(6.5)

-	GRB Name	\mathbf{Z}	Time	Obs. delay	Obs. duration	$\sigma > 2000s$ (full)	$\sigma > 2000 s$ (full)
			(UTC)	(s)	(s)	VERITAS II	VERITAS I
C	GRB060218	0.03342	2006-02-18T03:34:30	104.0	5766.0	63.7~(69)	51.2(56)
	GRB090618	0.54	2009-06-18T08:28:29	31.0	8553.0	1.5(1.6)	$<\!1~(<\!1)$
<	GRB190829A	0.0785	2019-08-29T19:56:44	46116.0	10605.0	6.0 (6.0)	4.9(4.9)

Discussion: Detectable VHE emission from GRBs

- Low redshift GRBs are favored.
- Early observation times are favored
- Improve IACT effective areas at low energies \rightarrow ability to detect GRBs
- Some GRBs are flagged as interesting for more than one IACT
- Importance of publishing and updating telescope performance data
- We highly encourage the three IACT collaborations to look for any data that might have been collected on the reported GRB
- The study of these GRBs can constrain the relation between the X-ray and the VHE gamma-ray fluxes

Discussion: XZ diagram

Discussion and conclusion

- Interesting VHE GRBs: < 1 per year (0.6 0.8 per year) for all IACTs.
- <1 every 2 years for a single site.
- These numbers increase by ½ order of magnitude with CTA (2 vs. 3 sites).
- Comparing CTA North to MAGIC: more than 1 order of magnitude improvement.
- It is the effect of sensitivity at **low energy** that plays a role.
- IACT observation and visibility conditions and the availability of X-ray and redshift measurements are considered → very low duty cycle.
- Non-ideal observation conditions, like observations at high zenith angles, short observation periods, and long observation delays, affect these numbers.
- + weather and instrumental issues
- \rightarrow No surprise the rate is so low, especially with hard observation criteria.
- GRB 221009A and GRB 230307A (BOAT & BOAT2)
- Taking GRBs with no redshift measurements might increase these numbers.

For the future

- Loosening criteria and quicker observations.
- After all 3 of the 5 VHE reported GRBs where observed either with large observation delay or under moonlight observations (outside hard criteria)
- Tests different hypothesis. GRB 221009A was not detected after 51 hours despite high X-ray emission
- \rightarrow need to reconsider **F** for some cases?
- X-ray $\leftarrow \rightarrow$ VHE relations constraints through stacked analysis