New Insight on Neutrino Dark Matter Interactions from Small-Scale CMB Observations

Sebastian Trojanowski AstroCeNT, Nicolaus Coperenicus Astronomical Center of the Polish Academy of Sciences & National Centre for Nuclear Research, Poland

AstroParticle Symposium 2023

Pascal Institute, Paris-Saclay University

September 13, 2023

P. Brax, C.v.d. Bruck, E. Di Valentino, W. Giare, ST, 2303.16895 (MNRAS:Letters) 2305.01383 (Phys. Dark Univ.)

Foundation for Polish Science

Republic

of Poland

European Union European Regional Development Fund

IONAL SCIENCE CENTRE

DARK MATTER – NEUTRINO INTERACTIONS

• appear naturally if dark matter (DM) coupled to weak gauge bosons or otherwise to $SU(2)_{L}$ lepton doublet, but...

• ...typically couplings to charged leptons dominate pheno (especially for electrons)

Can DM-v couplings determine DM phenomenology?

EXAMPLE 1: non-universal couplings to charged leptons,

e.g., $U(1)_{L\mu-L\tau}$ gauge boson portal to DM

- light DM and Z' \rightarrow self-interactions ^{J. Heeck, A. Thapa, 2202.08854}
- H_0 tension, $(g-2)_{\mu}$ anomaly
- still couplings to muons dominate pheno: tridents, ...

EXAMPLE 2: (sterile) neutrino portal to DM

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \overline{\chi} \left(i \partial - m_{\chi} \right) \chi + \overline{N} \left(i \partial - m_N \right) N + \partial_{\mu} S^* \partial^{\mu} S - \left[\lambda_{\alpha} \overline{L_{\alpha}} \tilde{H} N_R + \overline{\chi} \left(y_L N_L + y_R N_R \right) S + \text{h.c.} \right] - \mu_S^2 |S|^2 - \lambda_S |S|^4 - \lambda_{SH} |S|^2 H^{\dagger} H ,$$

B. Bertoni, etal, 1412.3113B. Batell, etal, 1709.07001M. Blennov, etal, 1903.00006

DARK MATTER - NEUTRINO INTERACTIONS & CMB

 $\frac{l(l+1)}{2\pi} C_l^{TT}$

- CMB plays an essential role in establishing DM role in the evolution of the Universe
- Non-interacting cold DM fast & slow modes of perturbation Baryon-photon and DM effectively self-gravitating until the drag epoch
- Neutrinos contribute to fast (baryon-photon) modes
- In the presence of DM-neutrino interactions: DM takes part in oscillations R.J. Wilkinson, etal, 1401.7597 → gravitational boost & enhanced CMB peaks
- G. Magano, etal 0606190 - DM- ν interactions could affect ν free streaming \rightarrow stronger clustering & enhanced CMB peak

P. Serra, etal, 0911.4411 DM has a lower sound speed \rightarrow drag effect, CMB peaks shifted and more...

• Visible effects at low multipoles => **bounds**

SMALL-SCALE CMB

- Diffusion damping of CMB peaks at small scales
- Difficulties in probing this regime due to foreground, etc.
- Atacama Cosmology Telescope (ACT)

 tool for high-multipole CMB
 measurements
- DM-v interactions:
- suppression of high-multipole peaks at few % level
- negligible effect at low multipoles for $u_{\nu DM} < 10^{\text{-5}}$
- Similar effect in the temperature (TT)
 & polarization (EE) distributions
- Future surveys can further improve: CMB-S4, ...

High-multipole CMB data = new window to study DM-v interactions

CURRENT DATA & ANALYSIS

DATA

• Planck 2018 temperature & polarization 1907.12875, 1807.06209, 1807.06205

lensing

1807.06210

- Atacama Cosmology Telescope (ACT) temp. & polar. DR4 2007.07289
- Baryon Acoustic Oscillations (BAO)
 & Redshift Space Distortions
 BOSS DR12
 1208.0022

ANALYSIS

- (modified) CLASS + DM-v 1104.2933, 1903.00540, 2011.04206
- Sampling: COBAYA (with CosmoMC) 2005.05290, 0205436, 1304.4473

	Parameter	$\sigma_{\nu \rm DM} \sim T^0$
	$\Omega_{ m b}h^2$	[0.005,0.1]
	$\Omega_{ m c}^{ m u DM} h^2$	[0.005,0.1]
	$100 \theta_{\mathrm{MC}}$	[0.5,10]
	au	[0.01,0.8]
	$\log(10^{10}A_{ m S})$	[1.61,3.91]
)	n_s	[0.8,1.2]
	$N_{ m eff}$	[0,10]
)	$\log_{10} u_{\nu \rm DM}$	[-8, -1]

• Adding ACT:

- weaker bounds on $u_{\nu DM}$
- non-zero coupling preferred

DM-

PREFERENCE: NON-ZERO DM-v COUPLING

T_v (GeV)

SAMPLE MODEL – STERILE NEUTRINO PORTAL

helps avoiding atrophysical bounds from blazars, etc.

FITTING THE DATA

- \bullet The model can accommodate the data \$g\$ & avoid exclusion bounds from accelerator-based searches
- For the DM mass ~ tens of MeV
- DM relic density requires, e.g., asymmetric DM component
- This also helps avoiding DM ID bounds from $\chi\chi \rightarrow \nu\nu$
- Future probes: DESI, Belle-II (τ decays)

CHALLENGES OF THE TOY MODEL:

- Mass degeneracy requires fine-tuning & can be radiatively unstable via $|\lambda_{\phi H}|\phi|^2|H|^2$
- Low neutrino kinetic decoupling temperature

$$T_{kd}\Big|_{m_{\phi} \simeq m_{\chi}} \simeq (0.12 \text{ keV}) \left(\frac{0.01}{g}\right)^2 \left(\frac{m_{\chi}}{20 \text{ MeV}}\right)^{\frac{3/2}{2}} M_{\text{cutoff}} \sim 10^{11} M_{\odot} (0.1 \text{ keV}/T_{kd})^3$$
• Possible DM (too) strong self-interactions
$$x = \frac{1}{\sqrt{1-1}} \frac{1}{\sqrt{1-1}$$

CONCLUSIONS

- CMB observations are crucial for our understanding of dark matter
- small-scale CMB measurements with few % accuracy open a new window to study DM interactions with neutrinos
- preference for non-zero DM-v coupling in the high-multipole ACT data & agreement with low-multipole Planck data + BAO & RSD
- Similar earlier hints from Lyman- α
- We modeled this for the effectively temperature-independent cross section (T⁰), but the preference is also found for the T² case
- Toy model: sterile neutrino portal to DM
- Can accommodate the data but careful checking of other effects needed (cutoff scale, DM self-interactions...)
- Future data: ACT, CMB-S4, DESI, ... + accelerator-based bounds on sterile neutrinos

