AstroParticle Symposium

Inflationary and Post-Inflationary Scalar Dark Matter Production

Marcos A. G. García

+ Mathias Pierre (DESY) and Sarunas Verner (Florida)

2206.08940, 2303.07359, 2305.14446

Universidad Nacional Autónoma de México

Observations from 21 cm hydrogen. galaxy rotation 100 V (km/s) Expected from visible disk 10 20 40 50 R (× 1000 ly) collisions of clusters

Non-gravitational detection

1. Motivation

direct detection

annihilations in the galactic core

4. Prospects

3. Limits

2. Production

Minimal scalar dark matter

A simple DM model: scalar χ (spin 0) which only interacts with gravity and/or the inflaton ϕ

$$\mathcal{S} = \int d^4x \sqrt{-g} \left[-\frac{1}{2} (M_P^2 - \xi \chi^2) R + \frac{1}{2} (\partial_\mu \chi)^2 - \frac{1}{2} m_\chi^2 \chi^2 - \frac{1}{2} \sigma \phi^2 \chi^2 \right]$$

$$+\frac{1}{2}(\partial_{\mu}\phi)^{2} - \frac{6\lambda M_{P}^{4} \tanh^{2}\left(\frac{\phi}{\sqrt{6}M_{P}}\right)}{\text{T-model inflation}} - \frac{y\phi\bar{\psi}\psi}{\sqrt{6}M_{P}} + \mathcal{L}_{SM}$$

Limits

3.

4. Prospects

Inflationary couplings normalized by

$$\lambda \; \simeq \; {3 \pi^2 A_{S*} \over N_*^2} \, , \qquad T_{\rm reh} \; \simeq \; \left({9 \lambda \over 20 \pi^4 g_{\rm reh}}
ight)^{1/4} y \, M_P$$

2. Production

QFT in the early universe

Introducing conformal time, $dt = a d\tau$, and the re-scaled field $X = a\chi$,

$$\left(\partial_{\tau}^2 - \nabla^2 + a^2 m_{\rm eff}^2\right) X = 0, \qquad m_{\rm eff}^2 = m_{\chi}^2 + \sigma \phi^2 + \frac{1}{6}(1 - 6\xi) R$$

Quantize as a superposition of oscillators

$$\hat{X}(\tau, \mathbf{x}) = \int \frac{d^3 \mathbf{k}}{(2\pi)^{3/2}} e^{-i\mathbf{k}\cdot\mathbf{x}} \left[X_k(\tau)\hat{a}_k + X_k^*(\tau)\hat{a}_{-\mathbf{k}}^{\dagger} \right], \qquad [\hat{a}_k, \hat{a}_{k'}^{\dagger}] = \delta(\mathbf{k} - \mathbf{k'}), \quad \hat{a}_k |0\rangle = 0$$

obtaining

$$X_k'' + \omega_k^2 X_k = 0$$
, with $\omega_k^2 = k^2 + a^2 m_{
m eff}^2$

QFT in the early universe

Introducing conformal time, $dt = a d\tau$, and the re-scaled field $X = a\chi$,

$$\left(\partial_{\tau}^2 - \nabla^2 + a^2 m_{\rm eff}^2\right) X = 0, \qquad m_{\rm eff}^2 = m_{\chi}^2 + \sigma \phi^2 + \frac{1}{6}(1 - 6\xi) R$$

Quantize as a superposition of oscillators

$$\hat{X}(\tau, \mathbf{x}) = \int \frac{d^3 \mathbf{k}}{(2\pi)^{3/2}} e^{-i\mathbf{k}\cdot\mathbf{x}} \left[X_k(\tau)\hat{a}_k + X_k^*(\tau)\hat{a}_{-\mathbf{k}}^{\dagger} \right], \qquad [\hat{a}_k, \hat{a}_{k'}^{\dagger}] = \delta(\mathbf{k} - \mathbf{k}'), \quad \hat{a}_k |0\rangle = 0$$

obtaining

$$X_k'' + \omega_k^2 X_k = 0$$
, with $\omega_k^2 = k^2 + a^2 m_{
m eff}^2$

For a mode inside the horizon,

$$\omega_k^2 = \frac{k^2}{k^2} + \mathcal{O}\left(\frac{a^2H^2}{k^2}\right) > 0$$
free particle

Perturbative DM production

The perturbative picture: inflaton, gravity and dark matter as (quasi)particles

The solution of the Boltzmann equation

$$\frac{\partial f_{\chi}}{\partial t} - H|\mathbf{P}|\frac{\partial f_{\chi}}{\partial |\mathbf{P}|} = \frac{\pi |\mathcal{M}|^2}{2m_{\phi}^2}\delta(|\mathbf{P}| - m_{\phi})$$

with

2. Production

$$|\mathcal{M}|^2 = \frac{1}{8} \frac{\rho_{\phi}^2}{m_{\phi}^4} \left[\sigma - \lambda(1 - 6\xi)\right]^2$$

is the following Phase Space Distribution:

$$f_{\chi}(q,t) = \frac{\sqrt{3}\pi \hat{\sigma}^2 \rho_{\rm end}^{3/2} M_P}{16m_{\phi}^7} \left(\frac{H_{\rm end}}{m_{\phi}} q\right)^{-9/2} \theta(q-1) \theta\left(\frac{a(t)}{a_{\rm end}} - \frac{H_{\rm end}}{m_{\phi}} q\right)$$

3. Limits

with
$$q \equiv \frac{|\mathbf{P}|}{T_{\star}} \left(\frac{a}{a_{\text{end}}}\right)$$
, $T_{\star} \equiv H_{\text{end}}$

🧟 4. Prospects

Gravitational particle production during inflation

Light scalar fields are unstable during inflation

$$X_k'' + \omega_k^2 X_k = 0$$
, with $\omega_k^2 = k^2 + 2(aH)^2 \left[\frac{m_\chi^2}{2H^2} + \frac{\sigma \phi^2}{2H^2} - 1 + 6\xi \right]$

For a mode that is outside the horizon ($k/aH \ll 1$),

 $\omega_k^2 \ < \ 0 \qquad {
m if} \qquad m_\chi^2 < 2 H^2 \ , \ \sigma/\lambda \ll 1, \quad {
m and} \quad \xi < 1/6 \qquad ({
m tachyonic instability})$

No free particle state during inflation \Rightarrow no perturbative picture

2. Production

Gravitational production

Gravitational production

Strong inflaton coupling

Linear regime: The inflaton remains a condensate \Rightarrow Hartree aproximation

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi} + \sigma \langle \chi^2 \rangle \phi = 0$$
$$\langle \chi^2 \rangle = \frac{1}{(2\pi)^3 a^2} \int d^3 \mathbf{p} \left(|X_p|^2 - \frac{1}{2\omega_p} \right)$$

L. Kofman, A. Linde, A. Starobinsky, PRD 56 (1997) 3258

MG, K. Kaneta, Y. Mambrini, K. Olive, S. Verner, JCAP 03 (2022) 016

Non-linear regime: The inflaton is fragmented \Rightarrow (Cosmo)Lattice

$$\ddot{\phi} + 3H\dot{\phi} - \frac{\nabla^2 \phi}{a^2} + V_{,\phi} = 0$$
$$\ddot{\chi} + 3H\dot{\chi} - \frac{\nabla^2 \chi}{a^2} + V_{,\chi} = 0$$

D. Figueroa, et al., Comput. Phys. Commun. 283, 108586 (2023)

Linear regime

Parametric resonance $f_{\chi}(p) \sim e^{2\mu_p m_{\phi} t}$

. 4. Prospects

Non-linear regime

Re-scattering leads to a broader distribution with pseudo-thermal tail for ϕ and χ , $f_{\chi} ~\sim~ e^{-lpha(\sigma/\lambda;t)q}$

Relic abundance, gravitational production

Relic abundance, gravitational production

Relic abundance, inflaton decay

Isocurvature in the CMB

Y. Akrami et al. [Planck], Astron. Astrophys. 641, A10 (2020)

🗱 2. Production

CDI: cold dark matter density isocurvature NDI: neutrino density isocurvature NVI: neutrino velocity isocurvature

However, they have not been detected,

$$\beta_{\rm iso} = \frac{\mathcal{P}_{\mathcal{S}}}{\mathcal{P}_{\mathcal{R}} + \mathcal{P}_{\mathcal{S}}} < \begin{cases} 2.5\% \text{ (CDI)} \\ 7.4\% \text{ (NDI)} \\ 6.8\% \text{ (NVI)} \end{cases}$$

This constraint applies only at large scales ($k_*=0.002\,{
m Mpc}^{-1}$)

At smaller scales, $^{(\gamma)}_{/^{-}}$

3. Limits

Isocurvature in gravitational production

4. Prospects

Isocurvature in production from inflaton decay

2. Production

Structure formation constraints

Structure formation constraints

Light, but cold enough, dark matter

Parameter space for gravitational production

Parameter space for production from inflaton decay

2. Production

6

Additional constraints?

Distortions of the CMB frequency spectrum

D. Fixsen et al., Astrophys. J. 473 (1996), 576

🐮 2. Production

Energy injected into the CMB at different times results in a spectrum that mixes regions at different temperatures

> FIRAS: $|\mu| < 9 \times 10^{-5}$ PIXIE: $|\mu| < 10^{-9}$

3. Limits

Additional constraints?

Isocurvature-induced gravitational waves

M. Ricotti and A. Gould, Astrophys. J. 707 (2009), 979; T. Bringmann et al., PRD 85 (2012), 125027

3. Limits

4. Prospects

2. Production

Thank you

