Positivity bounds on Higgs-portal dark matter

Hyun Min Lee

Chung-Ang University, Korea

Ref: S.-S. Kim, HML, K. Yamashita, JHEP 06 (2023) 124; arXiv: 2308. 14629, in press in JHEP

Astroparticle Symposium 2023 Pascal Institut, Orsay, France, Oct 25, 2023

Outline

- Introduction
- Higgs-portal dark matter and positivity
- Conclusions

Introduction

Higgs @ LHC

- Measured Higgs couplings are consistent with the SM.
- There is no convincing hint for new physics at TeV scale.
- Higgs precision test is crucial for EFT framework.

Dark matter @ DD

The SM EFT

New physics beyond SM is encoded by higher order terms.

[Buchmuller, Wyler (1986); Grzadkowski et al (2010)]

$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i=1}^{n_d} \frac{C_i^{(d)}}{\Lambda^{d-4}} Q_i^{(d)}$ **Dimension-6 operators** []. Ellis et al (2020)]

 H^6 and H^4D^2 $\psi^2 H^3$ X^3 $f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$ $(H^{\dagger}H)^3$ $(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$ \mathcal{O}_{G} \mathcal{O}_{H} \mathcal{O}_{eH} $f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$ $\mathcal{O}_{\tilde{G}}$ $\mathcal{O}_{H\square}$ $(H^{\dagger}H) \sqcap (H^{\dagger}H)$ \mathcal{O}_{uH} $(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$ $\varepsilon^{IJK}W^{I\nu}W^{J\rho}W^{K\mu}$ $(H^{\dagger}D^{\mu}H)^{\star}(H^{\dagger}D_{\mu}H)$ ${\cal O}_{_{dH}}$ $(H^{\dagger}H)(\bar{q}_p d_r H)$ \mathcal{O}_W \mathcal{O}_{HD} $\varepsilon^{IJK}\widetilde{W}^{I\nu}W^{J\rho}W^{K\mu}$ Ow X^2H^2 $\psi^2 X H$ $\psi^2 H^2 D$ $(H^{\dagger}i D_{\mu} H)(\bar{l}_p \gamma^{\mu} l_r)$ $H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$ $(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$ $\mathcal{O}_{Hl}^{(1)}$ \mathcal{O}_{eW} \mathcal{O}_{HG} $H^{\dagger}H\,\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$ $(H^{\dagger}i D_{\underline{\mu}}^{I} H) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$ ${\cal O}_{Hl}^{(3)}$ $(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$ $\mathcal{O}_{H\widetilde{G}}$ \mathcal{O}_{eB} $H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$ \mathcal{O}_{He} $(H^{\dagger}iD_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$ \mathcal{O}_{HW} \mathcal{O}_{uG} $H^{\dagger}H \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$ $\mathcal{O}_{Hg}^{(1)}$ $(H^{\dagger}iD_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$ ${\cal O}_{uW}$ $\mathcal{O}_{H\widetilde{W}}$ $\mathcal{O}_{H_{q}}^{(3)}$ $(H^{\dagger}i D^{I}_{\mu} H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$ $(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$ $H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$ \mathcal{O}_{uB} \mathcal{O}_{HB} $H^{\dagger}H \widetilde{B}_{\mu\nu}B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$ $(H^{\dagger}i D_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$ \mathcal{O}_{Hu} \mathcal{O}_{dG} ${\cal O}_{H\widetilde{B}}$ $H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$ $(H^{\dagger}iD_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$ \mathcal{O}_{Hd} \mathcal{O}_{HWB} \mathcal{O}_{dW} $H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$ $i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$ \mathcal{O}_{dB} $\mathcal{O}_{_{Hud}}$ $\mathcal{O}_{H\widetilde{W}B}$ $(\bar{L}L)(\bar{L}L)$ $(\bar{R}R)(\bar{R}R)$ $(\bar{L}L)(\bar{R}R)$ \mathcal{O}_{ii} $(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$ Ore $(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$ \mathcal{O}_{le} $(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$ $\mathcal{O}_{qq}^{(1)} \ \mathcal{O}^{(3)}$ $(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$ \mathcal{O}_{uu} \mathcal{O}_{lu} $(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$ $(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$ \mathcal{O}_{ld} \mathcal{O}_{dd} $(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$ $(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$ \mathcal{O}_{lq}^{qq} \mathcal{O}_{eu} $(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$ $(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$ \mathcal{O}_{qe} $(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$ $\mathcal{O}_{qu}^{(1)} \ \mathcal{O}_{qu}^{(8)} \ \mathcal{O}_{qd}^{(1)}$ $\mathcal{O}_{la}^{(3)}$ $(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$ \mathcal{O}_{ed} $(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$ $(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$ $(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$ $\mathcal{O}_{ud}^{(1)}$ $(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$ $\mathcal{O}_{ud}^{(8)}$ $(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$ $(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$ $\mathcal{O}_{ad}^{(8)}$ $(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$ $(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$ **B**-violating $\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(d_p^{lpha})^T C u_r^{eta}
ight]\left[(q_s^{\gamma j})^T C l_t^k
ight]$ $(\bar{l}_{p}^{j}e_{r})(\bar{d}_{s}q_{t}^{j})$ \mathcal{O}_{dug} $\mathcal{O}_{\scriptscriptstyle ledq}$ $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$ ${\cal O}_{quqd}^{(1)}$ $(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$ \mathcal{O}_{qqu} $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$ $\mathcal{O}_{quqd}^{(8)}$ $(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$ \mathcal{O}_{qqq} $\varepsilon^{lphaeta\gamma}\left[(d^{lpha}_{n})^{T}Cu^{eta}_{r}
ight]\left[(u^{\gamma}_{s})^{T}Ce_{t}
ight]$ $\mathcal{O}_{lequ}^{(1)}$ $(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$ \mathcal{O}_{duu} $\mathcal{O}_{lequ}^{(3)}$ $(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$

Dimension-8 (Higgs only)

[C.W. Murphy (2020); Hao-Lin Li et al (2020)]

10

Mass dimension

11

15

14

12

13

Consistent EFTs

Higgs sector EFT:
$$\Delta \mathcal{L}_H = \sum_{n+m\geq 3} \frac{c_{n,m}}{\Lambda^{2(n+m)-4}} H^{2n} D^{2m}$$

	2	$: H^8$	
\mathcal{O}_H $\mathcal{O}_{H \square}$	$(H^{\dagger}H)^{3}$ $(H^{\dagger}H)\Box(H^{\dagger}H)$	Q_{H^8}	$(H^{\dagger}H)^4$
\mathcal{O}_{HD}	$\left(H^{\dagger}D^{\mu}H\right)^{\star}\left(H^{\dagger}D_{\mu}H\right)$		

$3:H^6D^2$		$4:H^4D^4$		
	$Q_{H^6}^{(1)}$	$(H^{\dagger}H)^2(D_{\mu}H^{\dagger}D^{\mu}H)$	$Q_{H^4}^{\left(1 ight) }$	$(D_\mu H^\dagger D_ u H) (D^ u H^\dagger D^\mu H)$
	$Q_{H^6}^{(2)}$	$(H^{\dagger}H)(H^{\dagger} au^{I}H)(D_{\mu}H^{\dagger} au^{I}D^{\mu}H)$	$Q_{H^4}^{(2)}$	$(D_{\mu}H^{\dagger}D_{\nu}H)(D^{\mu}H^{\dagger}D^{\nu}H)$
			$Q_{H^4}^{(3)}$	$(D^\mu H^\dagger D_\mu H) (D^ u H^\dagger D_ u H)$

 $-\Delta -$

[e.g. C. Burgess, HML, M. Trott (2009)]

- Adiabaticity: $\dot{\phi}/\phi \ll \Lambda$ No excitation of new states
- Perturbativity: $\Gamma_{eff} = \Gamma_{tree} + \Gamma_{loops}, \qquad |\Gamma_{loops}| \ll |\Gamma_{tree}|$
- Unitarity: S-matrix S = 1 + iT, $|S| \le 1$

Positivity: Reduced S-matrix

$$\frac{\partial^2 \mathcal{M}}{\partial s^2} = \frac{4}{\pi} \int_{s>0} ds \, \frac{s\sigma(s)}{s^3} > 0$$

Positivity bounds

• Analyticity, locality, unitarity of S-matrix

 $\phi\phi \rightarrow \phi\phi \text{ scattering}$: Forward limit, $t \rightarrow 0$ [A.Adams et al (2006)]

-5-

Im $A = s\sigma(s)$: optical theorem $\longrightarrow A''(s = M^2) = \frac{4}{\pi} \int_{s>0} ds \frac{s\sigma(s)}{s^3} > 0$ $s \ll \Lambda^2$: EFT amplitude, $A(s) = g \sum_{n=1}^{\infty} c_n \left(\frac{s^2}{\Lambda^2}\right)^n$ Similar contour integrals $\longrightarrow c_n > 0$ "Positivity" for dim-8 ops

SM EFT for dark matter

• Extend the SM EFT with Higgs-portal dark matter.

Scalar dark matter with Z₂ symmetry: [S.-S. Kim, HML, K. Yamashita (2023)]

Dimension-4	Dimension-6	Dimension-8
$c_3 \cdot arphi^2 H ^2$	$ert arphi^2 D_\mu H ^2 \ d_4 \ H ^2 (\partial_\mu arphi)^2$	$(D_{\mu}H^{\dagger}D_{\nu}H)(\partial^{\mu}\varphi\partial^{\nu}\varphi)$ $(D_{\mu}H^{\dagger}D^{\mu}H)(\partial_{\nu}\varphi\partial^{\nu}\varphi)$
	$c_3' arphi^2 H ^4, \ arphi^4 H ^2$	$d_{4'}^{\prime} H ^4(\partial_{\mu}arphi)^2, \ arphi^4 H ^4$

+ DM self-interactions $\partial_{\mu}\varphi \partial^{\mu}\varphi \partial_{\nu}\varphi \partial^{\nu}\varphi$, φ^{4} , φ^{6} , φ^{8} ,...

Dim-4 & Dim-6 couplings and direct detection:

Q

h

$$\mathcal{L}_{h,\text{linear}} = \frac{1}{3\Lambda^4} h \Big[2(c_3 - c'_3)\lambda_H v^3 m_{\varphi}^2 \varphi^2 - (d_4 - d'_4)\lambda_H v^3 (\partial_\mu \varphi)^2 \Big], \quad c_3 = c'_3, \ d_4 = d'_4$$

$$\varphi - \varphi$$

Positivity bounds and UV completion for WIMP and FIMP?

-6-

Higgs-portal dark matter and positivity

Higgs-portal dark matter

-7-

- Consider a singlet scalar dark mater in SM.
- Effective Higgs-portal interactions up to dim-8: Assumption: Z_2 symmetry, couplings suppressed by masses. [S.-S. Kim, HML, K. Yamashita(2023)] $\mathcal{L}_{\text{Higgs-portal}} = \mathcal{L}_1 + \mathcal{L}_2$ Up to 2-derivatives $\mathcal{L}_1 = -\frac{1}{6\Lambda^4} (c_1 m_{\varphi}^4 \varphi^4 + 4c_2 m_H^4 |H|^4 + 8c_2' \lambda_H m_H^2 |H|^6 + 4c_2'' \lambda_H^2 |H|^8$ $+4c_3m_{\varphi}^2m_H^2\varphi^2|H|^2+4c_3\lambda_Hm_{\varphi}^2\varphi^2|H|^4$ $+\frac{1}{6\Lambda^4} \Big(d_1 m_{\varphi}^2 \varphi^2 (\partial_{\mu} \varphi)^2 + 4 d_2 m_H^2 |H|^2 |D_{\mu} H|^2 + 4 d_2' \lambda_H |H|^4 |D_{\mu} H|^2 \Big)$ $+ 2d_3m_{\varphi}^2\varphi^2|D_{\mu}H|^2 + 2d_4m_H^2|H|^2(\partial_{\mu}\varphi)^2 + 2d'_4\lambda_H|H|^4(\partial_{\mu}\varphi)^2\Big),$ $\mathcal{L}_2 \supset \boxed{\begin{array}{c} O_{H^2\varphi^2}^{(1)} = (D_{\mu}H^{\dagger}D_{\nu}H)(\partial^{\mu}\varphi\partial^{\nu}\varphi) \\ O_{H^2\varphi^2}^{(2)} = (D_{\mu}H^{\dagger}D^{\mu}H)(\partial_{\nu}\varphi\partial^{\nu}\varphi) \end{array}}$ 4-derivatives $O_{\varphi^4} = \partial_\mu \varphi \partial^\mu \varphi \partial_\nu \varphi \partial^\nu \varphi$ $O_{H4}^{(1)} = (D_{\mu}H^{\dagger}D_{\nu}H)(D^{\nu}H^{\dagger}D^{\mu}H) \quad O_{H4}^{(2)} = (D_{\mu}H^{\dagger}D_{\nu}H)(D^{\mu}H^{\dagger}D^{\nu}H)$ $O_{H^4}^{(3)} = (D_{\mu}H^{\dagger}D^{\mu}H)(D_{\nu}H^{\dagger}D^{\nu}H)$

Positivity for multiple fields

-8-

Scattering matrix elements in the forward limit

$$A(s) = c_0 + c_1 \frac{s}{\Lambda^2} + c_2 \frac{s^2}{\Lambda^4} + \cdots \quad \longrightarrow \quad c_2 > 0$$

Scattering amplitudes for superposed states, ab→ab,

$$|a\rangle = u^i |i\rangle, |b\rangle = v^i |i\rangle, \ i = \frac{\phi_a(a = 1, 2, 3, 4), \varphi}{\text{Higgs}}$$
 Dark matter

Positivity bounds for ab \rightarrow ab: [S.-S. Kim, HML, K. Yamashita(2023)]

$$u^{i}v^{j}u^{*k}v^{*l}M^{ijkl} \ge 0, \qquad M^{ijkl} = \frac{1}{2}\frac{d^{2}}{ds^{2}}M(ij \to kl)(s, t = 0)\Big|_{s \to 0}.$$

Positivity for multiple fields

Bounds	Channels $(1\rangle + 2\rangle \rightarrow 1\rangle + 2\rangle)$
$C_{H^4}^{(1)} + C_{H^4}^{(2)} \ge 0$	$\ket{1}=\ket{\phi_1},\ \ket{2}=\ket{\phi_3}$
$C_{H^4}^{(1)} + C_{H^4}^{(2)} + C_{H^4}^{(3)} \ge 0$	$\ket{1}=\ket{\phi_1},\ \ket{2}=\ket{\phi_1}$
$C_{H^4}^{(2)} \geq 0$	$ 1\rangle = \phi_1\rangle , \ 2\rangle = \phi_2\rangle$
$C^{(1)}_{H^2 arphi^2} \geq 0$	$\left 1 ight angle=\left \phi_{1} ight angle,\;\left 2 ight angle=\left arphi ight angle$
$C_{arphi^4} \geq 0$	$\left 1 ight angle=\left arphi ight angle,\ \left 2 ight angle=\left arphi ight angle$
$ 2\sqrt{(C_{H^4}^{(1)} + C_{H^4}^{(2)} + C_{H^4}^{(3)})C_{\varphi^4}} $	$ 1\rangle = 2\sqrt{C_{\varphi^4}} \phi_1\rangle + \sqrt{-(C_{H^2\varphi^2}^{(1)} + C_{H^2\varphi^2}^{(2)})} \varphi\rangle,$
$\geq -\left(C^{(1)}_{H^2 \varphi^2} + C^{(2)}_{H^2 \varphi^2}\right)$	$ 2\rangle = 1\rangle$
$\sum_{2\sqrt{(C^{(1)}_{1}+C^{(2)}_{2}+C^{(3)}_{1})C_{1}}} \geq C^{(2)}_{1}$	$ 1\rangle = 2\sqrt{C_{\varphi^4}} \phi_1\rangle + \sqrt{C_{H^2\varphi^2}^{(2)}} \varphi\rangle,$
$- \bigvee (\circ_{H^4} + \circ_{H^4} + \circ_{H^4}) \circ \varphi^* = \circ_{H^2 \varphi^2}$	$\left 2\right\rangle = -2\sqrt{C_{\varphi^4}}\left \phi_1\right\rangle + \sqrt{C_{H^2\varphi^2}^{(2)}}\left \varphi\right\rangle$

[S.-S. Kim, HML, K.Yamashita(2023)]

Nontrivial bounds to on the Higgs-portal couplings with a combination of self-interactions for Higgs and dark matter.

Massive graviton or radion_10-

• Effective Higgs-portal interactions are matched to UV complete models: [S.-S. Kim, HML, K. Yamashita(2023)]

• Positivity bounds are satisfied for $c_H c_{\varphi} > 0$, & $c_H^r c_{\varphi}^r > 0$.

Attractive forces due to massive graviton or radion.

• Zero DM-nucleon cross section at tree level: $c_3 = c'_3$, $d_4 = d'_4$.

Disformal graviton

• Generalized metric tensor in Finsler geometry

 $ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} F(I,H,\varphi), \quad I = L^{2}g^{\alpha\beta}\partial_{\alpha}\varphi\partial_{\beta}\varphi, \quad H = L^{2}\frac{(\partial_{\alpha}\varphi\,dx^{\alpha})^{2}}{g_{\rho\sigma}dx^{\rho}dx^{\sigma}}$

$$\tilde{g}_{\mu\nu} = Cg_{\mu\nu} + D\partial_{\mu}\varphi\partial_{\nu}\varphi$$

$$C = 1 + c^{2}\frac{\varphi^{2}}{M_{Pl}^{2}} + c_{X}\frac{\partial_{\mu}\varphi\partial^{\mu}\varphi}{M_{Pl}^{4}}, \quad \text{``conformal''}$$

$$D = \frac{d}{M^{4}} + \frac{d}{M^{4}}\tilde{c}^{2}\frac{\varphi^{2}}{M_{Pl}^{2}}. \quad \text{``disformal''}$$

Causality: sub-luminal propagation of graviton

d > 0

[J. Bekenstein (1993)]

-11-

• Effective interactions to Higgs in Finsler geometry:

$$\mathcal{L}_{\text{eff}} = -\frac{1}{2}(\tilde{g}_{\mu\nu} - g_{\mu\nu})T_{H}^{\mu\nu} \qquad [P. \text{ Brax, K. Kaneta, Y.} \\ = -\frac{1}{2}(C-1)T_{\mu}^{H,\mu} - \frac{1}{2}D\partial_{\mu}\varphi\partial_{\nu}\varphi T^{H,\mu\nu} \qquad [Ambrini, M. Pierre (2023)]$$

$$\longrightarrow \text{ Positivity bounds: } C_{H^{2}\varphi^{2}}^{(1)} = -d > 0, \qquad C_{H^{2}\varphi^{2}}^{(2)} = \frac{1}{2}d + \tilde{c}_{X}$$

$$[S.-S. Kim, HML, K. Yamashita(2023)] \qquad c_{X} = \tilde{c}_{X}M_{Pl}^{4}/\Lambda^{4} \qquad \text{either signs}$$

 $\sqrt{(C_{H^4}^{(1)} + C_{H^4}^{(2)} + C_{H^4}^{(3)})}C_{\varphi^4} = 0.1$ imposed for self-interactions.

Fermion channels & direct detection relevant for $c_3 \neq c'_3, d_4 \neq d'_4$.

Graviton as UV completion -13-

• Parameter space is more restricted in the graviton case.

LHC limits on dim-8

-14-

• Dibosons & MET with two jets are searchable at LHC.

FIMP in EFTs

• Assume Scalar dark matter is never in thermal equilibrium.

"Freeze-in DM" Dim-4: $c_3 m_H^2 m_{\varphi}^2 / \Lambda^4 \lesssim 10^{-7}$ Dim-6: $d_3 m_{\varphi}^2 / \Lambda^4, d_4 m_H^2 / \Lambda^4 \lesssim 1 / (T_{reh}^3 M_{Pl})^{1/2}$ Dim-8: $C_{H^2 \varphi^2}^{(1,2)} / \Lambda^4 \lesssim 1 / (T_{reh}^7 M_{Pl})^{1/2}$ $c_3, d_4, d_3, C_{H^2 \varphi^2}^{(1,2)} = \mathcal{O}(1)$ Maximum temperature: $T_{reh} \lesssim \left(\frac{\Lambda^8}{M_{Pl}}\right)^{1/7}$

 Scalar dark matter is produced by Higgs-Higgs scattering with Dim-8 Higgs portal.

Scattering amplitude square: $s, t \gg m_{\varphi}^2, m_H^2$, $|\mathcal{M}_{\phi_i \phi_i \to \varphi \varphi}|^2 \simeq \frac{1}{576\Lambda^8} \left[3(C_{H^2 \varphi^2}^{(1)} + 2C_{H^2 \varphi^2}^{(2)})s^2 + 6C_{H^2 \varphi^2}^{(1)}t(t+s) \right]^2$ Dark matter produced until T=m_H: $T_{\text{reh}} \gg m_{\varphi}, m_H$, $Y_{\varphi}(m_H) \simeq \frac{g_{\phi} T_{\text{reh}}^7}{\sqrt{g_*(T_{\text{reh}})}} \frac{2\sqrt{\frac{2}{5}\pi^6}M_{Pl} \left(7(C_{H^2 \varphi^2}^{(1)})^2 + 40C_{H^2 \varphi^2}^{(1)}C_{H^2 \varphi^2}^{(2)} + 60(C_{H^2 \varphi^2}^{(2)})^2 \right)}{138915\Lambda^8}$

-15-

FIMP relic density

Scalar dark matter mass vs reheating temperature

safe from Lyman- forest bound

$$\Omega_{\varphi}h^{2} \simeq 0.12 \left(\frac{m_{\varphi}}{1 \text{ TeV}}\right) \left(\frac{T_{\text{reh}}}{10^{11} \text{ GeV}}\right)^{7} \left(\frac{10^{13} \text{ GeV}}{\Lambda}\right)^{8} \\ \times \left(\frac{14}{5} (C_{H^{2}\varphi^{2}}^{(1)})^{2} + 16C_{H^{2}\varphi^{2}}^{(1)} C_{H^{2}\varphi^{2}}^{(2)} + 24(C_{H^{2}\varphi^{2}}^{(2)})^{2}\right)$$

-16-

FIMP vs positivity

-17-

 High T_{reh} favors relatively large DM masses, I GeV-I TeV for T_{reh}=10¹¹ GeV; Positivity rules out part of parameter space.

 $\sqrt{(C_{H^4}^{(1)} + C_{H^4}^{(2)} + C_{H^4}^{(3)})}C_{\varphi^4} = 0.1$ imposed for self-interactions.

FIMP vs positivity

-18-

 Low T_{reh} favors small DM masses, e.g. IMeV-IGeV for T_{reh}=10⁶ GeV; Positivity rules out part of parameter space.

 $\sqrt{(C_{H^4}^{(1)} + C_{H^4}^{(2)} + C_{H^4}^{(3)})}C_{\varphi^4} = 0.1$ imposed for self-interactions.

Conclusions

-19-

- Positivity bounds lead to interesting hints through higher dimensional operators beyond the SM.
- Positivity bounds constrain dimension-8 Higgs-portal interactions for scalar dark matter, being complementary to relic density, direct/indirect detection and collider bounds.
- While dim-4 & dim-6 operators for Higgs-portal can be suppressed by mass squares from the underlying theory, dim-8 operators can be bounded by dark matter production & positivity.