

Black holes in modified gravity: Numerical solutions and scalarization

Daniela Doneva

University of Tübingen

- Guide mainly through **astrophysical relevant solutions** (asymptotically flat, not charged)
- GR alternatives typically carry **additional degrees of freedom**
- Either directly or effectively described by an **additional scalar field**
- Why not vector fields: often ghost instabilities are present Silva at al (2022)

(from yesterday) Lovelock's theorem

Quantum gravity motivated:

- Gauss-Bonnet gravity
- Chern-Simons gravity •

Cosmology:

- Ultralight axion dark matter
- Inflation scalar field
- f(R) theories

Daniela Doneva

Bekenstein (1972), Hawking (1972), Heuser (1992, 1996)

Assumptions

✓ A (non)minimally coupled scalar field to Einstein's gravity.

$$S = \frac{1}{4\pi} \int d^4x \sqrt{-g} \left(F(\varphi)R - \frac{1}{2} \nabla_{\mu} \varphi \nabla^{\mu} \varphi - V(\varphi) \right)$$

- ✓ Scalar field energy density > 0 (**weak energy condition**) $\rho = T^{S}_{\mu\nu}U^{\mu}U^{\nu} > 0$, where $T^{S}_{\mu\nu}$ - scalar field energy momentum tensor
- ✓ The scalar field has **the same symmetries as the spacetime**.

$$\partial_t \varphi = \partial_\phi \varphi = 0$$

- The theorems extended also to scalar-tensor theories with non-canonical selfgravitating static multiple scalar fields DD, Yazadjiev (2020)
- A nice **review** on the topic Herdeiro&Radu (2015)

- Add extra matter fields (often not astrophysically viable): accretions discs out of "normal" matter cardoso et al 2016, charger black holes with nonlinear electrodynamics Stefanov et al (2008,2009), DD et al (2010), for Einstein-Yang-Mills theory Bartnik, Mckinnon (1988), Einstein-Maxwell-scalar models Herdeiro at al. (2018)
- Add extra curvature invarinats (Gauss-Bonnet, Chern-Simons) Kanti et al., 1996, Yunes&Stein (2011), Sotiriou&Zhou (2014), Doneva et al (2018), Silva et al (2018), Antoniou at al (2018)
- **Time dependent scalar field** (or even vector field without ghosts) Herdeiro et al. (2015); Kleihaus et al. (2015); Babichev et al., (2017); Heisenberg et al. (2017); Herdeiro et al. (2016)
- Perhaps too exotic or pathological: violate the weak energy condition (e.g. well designed scalar field potential)

Violate the no-scalar-hair theorems

 The most general action involving scalar field (single!) and second order field equations: Hordneski theories

$$\begin{split} S_{H} &= \int d^{4}x \sqrt{-g} \left(L_{2} + L_{3} + L_{4} + L_{5} \right) \\ \text{Invited} \quad K(\phi, X), \\ L_{3} &= -G_{3}(\phi, X) \Box \phi, \\ L_{4} &= G_{4}(\phi, X) R + G_{4X} \left[(\Box \phi)^{2} - (\nabla_{\mu} \nabla_{\nu} \phi)^{2} \right], \\ L_{5} &= G_{5}(\phi, X) G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi \\ &- \frac{G_{5X}}{6} \left[(\Box \phi)^{3} - 3 \Box \phi (\nabla_{\mu} \nabla_{\nu} \phi)^{2} + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^{3} \right] \end{split}$$

- Includes: scalar-tensor theories, Gauss-Bonnet theories, etc.
- Outside of this classification dynamical-Chern-Simons gravity, multiple scalar fields, Lorenz-violating theories
- Long lived scalar fields (e.g. as a results of supperradiance), NOT a solution of the field equations but can "live" long enough

Daniela Doneva

- Often different GR modifications for the two regimes
- **Example**: curvature invariants often decrease very fast from the source and relevant only for small mass black holes with larger curvature

Gauss-Bonnet invariant for the **Schwarzschild** solutions:

$$\mathcal{R}_{GB}^2 = R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\alpha\beta}R^{\mu\nu\alpha\beta}$$
$$R_{GB}^2 = \frac{48M^2}{r^6}, \text{ at the horizon } R_{GB}^2 \sim \frac{1}{r_t^4}$$

 r_h^4

Numerical solutions for **supermassive black holes** – time dependent ۲ scalar/vector field around black holes. **Only rotating solutions!**

Kerr black holes with synchronized scalar hair

- GR action plus a minimally coupled complex massive scalar field Φ

$$S = \int \left[\frac{R}{2} - g^{\mu\nu}\partial_{\mu}\Phi^*\partial_{\nu}\Phi - 2U(\Phi)\right]\sqrt{-g}d^4x \text{ , with } U = \frac{1}{2}\mu^2|\Phi|^2$$

- The system is **invariant under U(1) transformations**, $\Phi \to \Phi e^{i\alpha}$, that leads to the presence of a **conserved current** and thus a **Noether charge** $j^{\mu} = -i(\Phi^* \partial^{\mu} \Phi - \Phi \partial^{\mu} \Phi^*)$ $Q = \int_{\Sigma \setminus \mathcal{H}} j^{\mu} n_{\mu} dV$
- The Noether charge -> number of particles.
- Stationarity and axisymmetry of the black hole require that

$$\Phi = \phi(r,\theta)e^{i(\omega t + m\varphi)}$$

- The **regularity** at the BH horizon requires $\omega = m\Omega_H$.
- Thus the name Kerr black holes with synchronized scalar hair

Kerr black holes with synchronized scalar hair

Structure of the solutions

- Complex scalar fields are **angularly excited** upon rotation
- The scalar field distributes itself in a torus (similar to boson stars)

Scalar field for hairy Kerr BH

Herdeiro, Radu PRL (2015)

Daniela Doneva

Beyond-GR black holes in EFT and scalarization

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \Big[R - 2\nabla_{\mu} \varphi \nabla^{\mu} \varphi - V(\varphi) + \lambda^2 f(\varphi) \mathcal{R}_{GB}^2 \Big]$$

Gauss-Bonnet invariant:
$$\mathcal{R}_{GB}^2 = R^2 - 4R_{\mu\nu} R^{\mu\nu} + R_{\mu\nu\alpha\beta} R^{\mu\nu\alpha\beta}$$

• Schwarzschild:
$$R_{GB}^2 = \frac{48M^2}{r^6}$$

• Field equations :

$$\begin{split} R_{\mu\nu} &- \frac{1}{2} R g_{\mu\nu} + \Gamma_{\mu\nu} = 2 \nabla_{\mu} \varphi \nabla_{\nu} \varphi - g_{\mu\nu} \nabla_{\alpha} \varphi \nabla^{\alpha} \varphi - \frac{1}{2} g_{\mu\nu} V(\varphi), \\ \nabla_{\alpha} \nabla^{\alpha} \varphi &= \frac{1}{4} \frac{dV(\varphi)}{d\varphi} - \frac{\lambda^2}{4} \frac{df(\varphi)}{d\varphi} \mathcal{R}_{GB}^2, \end{split}$$

Daniela Doneva

• Scalar field equation (zero scalar field potential) :

$$\Box \varphi = -\frac{\lambda^2}{4} \frac{df}{d\varphi} R_{GB}^2$$

• Conditions for the existence of scalarized solutions

$$(\Box - \mu_{\text{eff}}^2)\delta\varphi = 0 \text{ with } \mu_{\text{eff}}^2 = -\frac{\lambda^2}{4}\frac{d^2f}{d\varphi^2}(0)R_{GB}^2 < 0$$

• If $\mu_{eff}^2 < 0$ a tachyonic instability is present leading to a development of the scalar field.

Scalar field coupling $f(\boldsymbol{\varphi}) \quad \nabla_{\alpha} \nabla^{\alpha} \varphi = -\frac{\lambda^2}{4} \frac{df(\varphi)}{d\varphi} R_{GB}^2$

Expand $f(\varphi)$ in series around $\varphi = 0$: $f(\varphi) = f_0 + f_1\varphi + f_2\varphi^2 + f_3\varphi^3 + f_4\varphi^4 + O(\varphi^5)$

Type I:

• $f_1 \neq 0$: shift-symmetric theory, Schwarzschild is not a solution, $|\varphi| > 0$ always Kanti et al PRD(1996), Torii et al (1996), Pani&Cardoso PRD (2009)

Type II:

- $f_1 = 0, f_2 > 0, R_{GB}^2 > 0$: spontaneous scalarization, Kerr unstable for small masses DD, Yazadjiev PRL (2018), Silva et al PRL (2018), Antoniou et al (2018)
- $f_1 = 0$, $f_2 < 0$, $R_{GB}^2 < 0$: **spin-induced** scalarization, Kerr unstable for **large spins** Dima et al PRL (2020), DD et al RPD(2020), Berti at al PRL (2021), Herdeiro et al PRL (2021)

Type III:

• $f_1 = 0, f_2 = 0 : \mu_{eff}^2 = 0$, nonlinear scalarization, Kerr linearly stable always, nonlinear scalarized phases can co-exist DD, Yazadjiev, PRD Lett. (2021)

Type I - Schwarzschild is not a solution

• Einstein-dilaton-Gauss-Bonnet

$$f(\varphi) = e^{\alpha \varphi}$$

Daniela Doneva

Type II – Spontaneous scalarization

$$f(\varphi) = \frac{1}{2\beta} \left(1 - e^{-\beta \left(\varphi^2 + \kappa \varphi^4\right)} \right)$$

Daniela Doneva

What about rotation?

Rotation suppresses scalarization

$$f(\varphi) = \frac{1}{2\beta} \left(1 - e^{-\beta \left(\varphi^2 + \kappa \varphi^4\right)} \right)$$

$$f(\varphi) = \frac{1}{2\beta} (1 - e^{-\alpha \varphi})$$

• Above $\frac{J}{M^2} > 0.5$: spin induced scalarization Dima at al, PRL (2020), DD et al., PRD (2020), Herdeiro et al., PRL (2020), Berti et al., PRL (2020)

Daniela Doneva

Type III – Nonlinear scalarization

Daniela Doneva

Mixed II + III: Standard + nonlinear scalarization

$$f(\varphi) = \frac{1}{2\beta} \left(1 - e^{-\beta \left(\varphi^2 + \kappa \varphi^4\right)} \right)$$

- Transition from stable scalarized to GR happens with a jump
- For a similar effect for charged BH see Blázquez-Salcedo et al. PLB (2020)

Daniela Doneva

Mixed II + III: Standard + nonlinear scalarization

$$f(\varphi) = \frac{1}{2\beta} \left(1 - e^{-\beta \left(\varphi^2 + \kappa \varphi^4\right)} \right)$$

- Transition from stable scalarized to GR happens with a jump
- For a similar effect for charged BH see Blázquez-Salcedo et al. PLB (2020)

Daniela Doneva

Well-posedness

Studying hyperbolicity

- Principle symbol a matrix assembled by the coefficients in front of the leading (2nd) order derivative in the differential equation
- Scalar-Gauss-Bonnet gravity: Can be describen in terms of an effective metric Real PRD (2021), Areste-Salo et al PRL (2022), PRD (2022)

$$g_{\text{eff}}^{\mu\nu} = g^{\mu\nu} - \Omega^{\mu\nu}$$

 $\Omega_{\mu\nu} = \lambda \nabla_{\mu} \nabla_{\nu} f(\varphi)$

- Hyperbolicity loss when the determinant of the effective metric < 0
 East&Ripley PRL (2021), Areste-Salo et al PRL (2022), Hegade et al PRD (2023), Corman at al. PRD (2023)
- Modified harmonic gauge in Gauss-Bonnet theory the system remains hyperbolic in weak coupling limit Kovacs&Real PRL (2021)

Normalized determinant – spin-induced black hole

VS.

Daniela Doneva

Limitting models for hyperbolicity loss

DD et al. PRD (2023)

Daniela Doneva

Limitting models and weak coupling condition

• Weak coupling condition $\sqrt{|\lambda f'(\varphi)|}/L \ll 1$

 $L^{-1} = \max\{|R_{ij}|^{1/2}, |\nabla_{\mu}\varphi|, |\nabla_{\mu}\nabla_{\nu}\varphi|^{1/2}, |\mathcal{R}_{GB}^{2}|^{1/4}\}$

Daniela Doneva

Resolving the problem

- Gauge change not very likely to help, hyperbolicity loss due to eigenvalues of physical modes becoming imaginary Areste-Salo et al PRL (2022), PRD (2022), DD et al. PRD (2023)
- Fixing approach Franchini et al PRD (2022), Cayuso at al PRL (2023)
 - ✓ A prescription to control the high frequency behaviour of an EFT
 - ✓ Modify in an *ad hoc* way the higher-order contributions to the field equations
 - ✓ Add a driver equation to let the solution relax to its correct value
- Addition interactions in the action can mitigate the hyperbolicity loss

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R - \frac{1}{2} \nabla_{\mu} \varphi \nabla^{\mu} \varphi + \frac{1}{4} \lambda^{GB} f(\varphi) R^{GB} - \beta(\varphi) R \right]$$

Ricci scalar coupling

Ricci scalar coupling

$$f(\varphi) \sim \varphi^2$$
, $\beta(\varphi) \sim \beta \varphi^2$

- Previously unstable solution turn stable Antoniou et al PRD (2021)
- Loss of hyperbolicity is mitigated in 1D simulation Thaalba et al (2023)

Daniela Doneva

Ricci scalar coupling – 3D simulations

$$f(\varphi) \sim e^{-\beta_{GB}\varphi^2}$$
, $\beta(\varphi) \sim e^{-\beta_{Ricc}\varphi^2}$

Evolution of a single nonrotating black hole

DD, Yazadjiev, at al., in prep.

Daniela Doneva

Ricci coupling vs. GB coupling variation

Daniela Doneva

DD, Yazadjiev, at al., in prep.

Expand $f(\varphi)$ in series around $\varphi = 0$: $f(\varphi) = f_0 + f_1\varphi + f_2\varphi^2 + f_3\varphi^3 + f_4\varphi^4 + O(\varphi^5)$

Type I:

• $f_1 \neq 0$: shift-symmetric theory, Schwarzschild is not a solution, $|\varphi| > 0$ always Kanti et al PRD(1996), Torii et al (1996), Pani&Cardoso PRD (2009)

Type II:

- $f_1 = 0, f_2 > 0, R_{GB}^2 > 0$: spontaneous scalarization, Kerr unstable for small masses DD, Yazadjiev PRL (2018), Silva et al PRL (2018), Antoniou et al (2018)
- $f_1 = 0$, $f_2 < 0$, $R_{GB}^2 < 0$: **spin-induced** scalarization, Kerr unstable for **large spins** Dima et al PRL (2020), DD et al RPD(2020), Berti at al PRL (2021), Herdeiro et al PRL (2021)

Type III:

• $f_1 = 0, f_2 = 0 : \mu_{eff}^2 = 0$, nonlinear scalarization, Kerr linearly stable always, nonlinear scalarized phases can co-exist DD, Yazadjiev, PRD Lett. (2021)

THANK YOU!