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Going beyond GR

• Guide mainly through astrophysical relevant solutions (asymptotically flat, 
not charged)

• GR alternatives typically carry additional degrees of freedom

• Either directly or effectively described by an additional scalar field

• Why not vector fields: often ghost instabilities are present Silva at al (2022)



Berti et al. (2015)
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(from yesterday) Lovelock’s theorem

Cosmology:
• Ultralight axion dark matter
• Inflation scalar field 
• f(R) theories

Quantum gravity motivated:
• Gauss-Bonnet gravity
• Chern-Simons gravity 
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No-scalar-hair theorems

Bekenstein (1972),Hawking (1972), Heuser (1992,1996)
Assumptions

ü A (non)minimally coupled scalar field to Einstein’s gravity. 

𝑆 =
1
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&𝑑!𝑥 −𝑔 𝐹 𝜑 𝑅 −
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∇"𝜑∇"𝜑 − 𝑉 𝜑

ü Scalar field energy density > 0 (weak energy condition)
𝜌 = 𝑇"#$ 𝑈"𝑈# > 0, where 𝑇"#$ - scalar field energy momentum tensor

ü The scalar field has the same symmetries as the spacetime.
𝜕%𝜑 = 𝜕&𝜑 = 0

• The theorems extended also to scalar-tensor theories with non-canonical self-
gravitating static multiple scalar fields DD, Yazadjiev (2020)

• A nice review on the topic Herdeiro&Radu (2015)  
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Violate the no-scalar-hair theorems

• Add extra matter fields (оften not astrophysically viable): accretions 
discs out of ”normal” matter Cardoso et al 2016, charger black holes with 
nonlinear electrodynamics Stefanov et al (2008,2009), DD et al (2010), for Einstein-
Yang-Mills theory Bartnik, Mckinnon (1988), Einstein-Maxwell-scalar models 
Herdeiro at al. (2018)

• Add extra curvature invarinats (Gauss-Bonnet, Chern-Simons) Kanti et al., 
1996, Yunes&Stein (2011), Sotiriou&Zhou (2014), Doneva et al (2018), Silva et al (2018), 
Antoniou at al (2018)

• Time dependent scalar field (or even vector field without ghosts) Herdeiro
et al. (2015); Kleihaus et al. (2015); Babichev et al., (2017); Heisenberg et al. (2017); Herdeiro et 
al. (2016)

• Perhaps too exotic or pathological: violate the weak energy condition
(e.g. well designed scalar field potential) 
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Violate the no-scalar-hair theorems

• The most general action involving scalar field (single!) and second order field 
equations: Hordneski theories

• Includes: scalar-tensor theories, Gauss-Bonnet theories, etc.

• Outside of this classification – dynamical-Chern-Simons gravity, multiple scalar 
fields, Lorenz-violating theories

• Long lived scalar fields (e.g. as a results of supperradiance), NOT a solution of the 
field equations but can “live” long enough
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Stellar vs. Supermassive black holes

• Often different GR modifications for the two regimes

• Example: curvature invariants often decrease very fast from the source 
and relevant only for small mass black holes with larger curvature

Gauss-Bonnet invariant for the Schwarzschild solutions:

• Numerical solutions for supermassive black holes – time dependent 
scalar/vector field around black holes. Only rotating solutions!

𝑅'() = !*+!

," , at the horizon 𝑅'() ∼ -
,#
$



• GR action plus a minimally coupled complex massive scalar 
field Φ

,     with

• The system is invariant under U(1) transformations, Φ → Φe./, that leads to 
the presence of a conserved current                       and thus a Noether charge

• The Noether charge -> number of particles.

• Stationarity and axisymmetry of the black hole require that

Φ = 𝜙 𝑟, 𝜃 𝑒0 1%234

• The regularity at the BH horizon requires 𝝎 = 𝒎𝜴𝑯.

• Thus the name – Kerr black holes with synchronized scalar hair
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Kerr black holes with synchronized scalar hair



Structure of the solutions

• Complex scalar fields are angularly excited upon rotation

• The scalar field distributes itself in a torus (similar to boson stars)

Herdeiro, Radu PRL (2015)
Scalar field for hairy Kerr BH 
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Kerr black holes with synchronized scalar hair



Beyond-GR black holes in EFT and 
scalarization



• Schwarzschild: 𝑅!"# = $%&!

'"

• Field equations :

Gauss-Bonnet invariant:
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scalar-Gauss-Bonnet gravity



• Conditions for the existence of scalarized solutions

(□−𝜇eff
) )𝛿𝜑 = 0 with 𝜇eff

) = − 6!

!
7!8
74!

0 𝑅'() < 0

• If 𝝁eff
𝟐 < 𝟎 a tachyonic instability is present leading to a development of 

the scalar field.

• Scalar field equation (zero scalar field potential) :
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Scalar field equations – scalarization 

□𝜑 = −
𝜆)

4
𝑑𝑓
𝑑𝜑𝑅'(

)



Expand 𝒇 𝝋 in series around 𝜑 = 0:
𝑓 𝜑 = 𝑓# + 𝑓$𝜑 + 𝑓%𝜑% + 𝑓&𝜑& + 𝑓'𝜑' + 𝑂(𝜑()

Type I:
• 𝑓- ≠ 0: shift-symmetric theory, Schwarzschild is not a solution, 𝜑 > 0 always

Kanti et al PRD(1996), Torii et al (1996), Pani&Cardoso PRD (2009)

Type II:
• 𝑓- = 0, 𝑓)> 0, 𝑅'() > 0 : spontaneous scalarization, Kerr unstable for small 

masses  DD, Yazadjiev PRL (2018), Silva et al PRL (2018), Antoniou et al (2018)

• 𝑓- = 0 , 𝑓)< 0, 𝑅'() < 0 : spin-induced scalarization, Kerr unstable for large spins
Dima et al PRL (2020), DD et al RPD(2020), Berti at al PRL (2021), Herdeiro et al PRL (2021) 

Type III:
• 𝑓- = 0, 𝑓) = 0 : 𝜇eff

) = 0 , nonlinear scalarization, Kerr linearly stable always, 
nonlinear scalarized phases can co-exist DD, Yazadjiev, PRD Lett. (2021)

7th Nov, ParisDaniela Doneva

Scalar field coupling 𝒇(𝝋) ∇/∇/𝜑 = −
𝜆)

4
𝑑𝑓 𝜑
𝑑𝜑

𝑅'()



• Einstein-dilaton-Gauss-Bonnet
𝑓 𝜑 = 𝑒()
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Type I - Schwarzschild is not a solution

𝜑
)→+

𝐷
𝑟



Standard scalarization

DD, Yazadjiev, PRD Lett. (2021)
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Type II – Spontaneous scalarization

Stable GRUnstable GR



𝑓 𝜑 =
1
2𝛽

1 − 𝑒-. /!01/"
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What about rotation?

• Rotation suppresses scalarization

Cunha et al (2019)

• Above :
+! > 0.5 : spin induced scalarization Dima at al, PRL (2020), DD et al., PRD (2020), 

Herdeiro et al., PRL (2020), Berti et al., PRL (2020) 

𝑓 𝜑 =
1
2𝛽 1 − 𝑒-2/

Kleinhaus et al (2011)



𝑓 𝜑 =
1
2𝛽

1 − 𝑒*+ )!,-),
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Type III – Nonlinear scalarization

DD, Yazadjiev, PRD Lett. (2021)

𝜑
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𝐷
𝑟

Stable GR



𝑓 𝜑 =
1
2𝛽 1 − 𝑒*+ )!,-),

• For a similar effect for charged BH see Blázquez-Salcedo et al. PLB (2020)
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Mixed II + III: Standard + nonlinear scalarization

Standard scalarization

Nonlinear scalarized phases

• Transition from stable scalarized to GR happens with a jump

DD, Yazadjiev, PRD Lett. (2021)
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Stable GRUnstable GR



𝑓 𝜑 =
1
2𝛽 1 − 𝑒*+ )!,-),

• For a similar effect for charged BH see Blázquez-Salcedo et al. PLB (2020)
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Mixed II + III: Standard + nonlinear scalarization

Standard scalarization

Nonlinear scalarized phases

• Transition from stable scalarized to GR happens with a jump

DD, Yazadjiev, PRD Lett. (2021)

𝜑
)→+

𝐷
𝑟

Stable GRUnstable GR



Well-posedness
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Studying hyperbolicity

• Principle symbol – a matrix assembled by the coefficients in front of the 
leading  (2nd) order derivative in the differential equation

• Scalar-Gauss-Bonnet gravity: Can be describen in terms of an effective 
metric Real PRD (2021), Areste-Salo et al PRL (2022), PRD (2022)

• Hyperbolicity loss when the determinant of the effective metric < 0 
East&Ripley PRL (2021), Areste-Salo et al PRL (2022), Hegade et al PRD (2023), Corman at al. PRD 
(2023)

• Modified harmonic gauge in Gauss-Bonnet theory – the system remains 
hyperbolic in weak coupling limit Kovacs&Real PRL (2021)
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Normalized determinant – spin-induced black hole

VS.

DD et al. PRD (2023)

Hyperbolic evolution
Hyperbolicity loss
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Limitting models for hyperbolicity loss

DD et al. PRD (2023)
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Limitting models and weak coupling condition

• Weak coupling condition

DD et al. PRD (2023)
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Resolving the problem

• Gauge change – not very likely to help, hyperbolicity loss due to eigenvalues of 
physical modes becoming imaginary Areste-Salo et al PRL (2022), PRD (2022), DD et al. 
PRD (2023)

• Fixing approach Franchini et al PRD (2022), Cayuso at al PRL (2023)
ü A prescription to control the high frequency behaviour of an EFT
ü Modify in an ad hoc way the higher-order contributions to the field 

equations
ü Add a driver equation to let the solution relax to its correct value

• Addition interactions in the action can mitigate the hyperbolicity loss

𝑆 =
1
16𝜋

&𝑑!𝑥 −𝑔 𝑅 −
1
2
∇"𝜑∇;𝜑 +

1
4
𝜆'(𝑓 φ 𝑅'( − 𝛽 𝜑 𝑅

Ricci scalar coupling
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Ricci scalar coupling 

𝑓 𝜑 ∼ 𝜑), 𝛽 𝜑 ∼ 𝛽𝜑)

• Previously unstable solution turn stable Antoniou et al PRD (2021)

• Loss of hyperbolicity is mitigated in 1D simulation Thaalba et al (2023)

Antoniou et al PRD (2021)
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Ricci scalar coupling – 3D simulations

𝑓 𝜑 ∼ 𝑒<=%&4! , 𝛽 𝜑 ∼ 𝑒<='())4!

• Evolution of a single nonrotating black hole 

DD, Yazadjiev, at al., in prep.
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Ricci coupling vs. GB coupling variation 

VS.

𝑓 𝜑 ∼ 𝑒<=%&4! , 𝛽 𝜑 ∼ 𝑒<='())4!

Vary Gauss-Bonnet part , 𝛽34

Vary Ricci coupling part, 𝛽5677

DD, Yazadjiev, at al., in prep.



Expand 𝒇 𝝋 in series around 𝜑 = 0:
𝑓 𝜑 = 𝑓# + 𝑓$𝜑 + 𝑓%𝜑% + 𝑓&𝜑& + 𝑓'𝜑' + 𝑂(𝜑()

Type I:
• 𝑓- ≠ 0: shift-symmetric theory, Schwarzschild is not a solution, 𝜑 > 0 always

Kanti et al PRD(1996), Torii et al (1996), Pani&Cardoso PRD (2009)

Type II:
• 𝑓- = 0, 𝑓)> 0, 𝑅'() > 0 : spontaneous scalarization, Kerr unstable for small 

masses  DD, Yazadjiev PRL (2018), Silva et al PRL (2018), Antoniou et al (2018)

• 𝑓- = 0 , 𝑓)< 0, 𝑅'() < 0 : spin-induced scalarization, Kerr unstable for large spins
Dima et al PRL (2020), DD et al RPD(2020), Berti at al PRL (2021), Herdeiro et al PRL (2021) 

Type III:
• 𝑓- = 0, 𝑓) = 0 : 𝜇eff

) = 0 , nonlinear scalarization, Kerr linearly stable always, 
nonlinear scalarized phases can co-exist DD, Yazadjiev, PRD Lett. (2021)
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Scalar field coupling 𝒇(𝝋)



THANK YOU!


