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1. Perturbation framework in GR: recovering a master equation
2. Generalisation to modified gravity: what is known and what is not
3. Quasinormal modes: definition, computation, properties

4. Discussion



Perturbation framework in GR



Rotating bla

Regge-Wheeler gauge Schrodinger equation

General setup

Perturbations of the metric

Juv = g,u,y + huy
G da* dz” = —A(r) dt* +dr® /B(r) + C(r) dQ?

- Focus on gravitational perturbations: main conclusions still valid for
scalar/spinor/vector perturbations

- Work initially done in [Regge+57; Zerilli+70]

- Decompose hy,, as SVT on the 2-sphere



Regge-Wheeler gauge

Metric components

Axial modes: odd-parity perturbations
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Regge-Wheeler gauge

Separating the degrees of freedom

1. Start with the Einstein-Hilbert action
S[gun] =/d495\/—93

2. Impose static spherically symmetric background
3. Perturb the metric: g, = gu + hw, Inject RW gauge and linearise Einstein’s
equations
= obtain 10 equations for 10 functions
4. The system separates by parity: polar (even) and axial (odd) modes
5. Gauge fixing via hy, — hy + V& + Vo€, can set by, o, 5 and G to zero

- Polar modes: 7 equations for K, Hy, H,, Hy
- Axial modes: 3 equations for hg, h; 4



Regge-Wheeler gauge Schrodinger equation Rotating bla

Reducing the number of equations

Two systems with more equations than variables — overconstrained?

Axial modes Polar modes
- 2 first-order equations - 4 first-order equations
- 1second-order equation - 2 second-order equations

- 1algebraic equation

Interestingly, each system is equivalent to a system [Regge+57;

Zerilli+70]
anxial o

d X0
1r Mayial (1) Xaxial » poar
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= Mpotar(r)Xpolar



Schrodinger equation

Final system of equations

Axial modes

KXaxial = ! (hf) hl/w)
2 2nEE—dw
Moxiar = | 2 T
(r—p)? r(r—mp)

(set2(A+1) =£(£ + 1))

)

X

1

polar —

3p+2Ar

Polar modes

potar = * (K Hi/w)

a11(N)+b11(Nw?  a12(r)+bia(r)w?
r(r—pm) 2 :

agl(r)+b21(r)w2 a22(7‘)+1)22(7“)w2
2(r—p)? r(r—p)

= goal to achieve: simplify these complicated differential systems



>-Wheeler gauge Schrédinger equation Rotating black hole

Effect of a change of variables

Changing the functions in X a change of basis for M!

Change of variables

dXx 3

—=Mr)X, X=PrX

O (r)X, (r)
dx - o - dpP
— =M(rX, M=pP'Mp-pP 11—
dr P dr

Main idea: find a change of variables that will put the equation into a better form



-Wheeler gauge Schrodinger equation Rotating black hole

Usual change of variables: propagation equation

Canonical form for M:

Physical interpretation

5 — 1 2y 2
d= X = d
ar: e (“’2 - V(r)) =0, <= nr
dX; 50 o = dr? @ dr,
=L = (V) - WP/

with potential V'

r.: “tortoise coordinate”, r =y — r, = —co and r = +oo — 1, = +00



heeler gauge Schrodinger equation Rotating black hole

Interpretation of the equations

Axial case:

1- ,U/T r 0.5 F Vpolar
P, Xie = 5 C = 1
o (z’r?/(r ) o)

041 B!
=
: 0.3 B!
Polar case: ok i
2,2« 2 £ 4
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_ 2r2(3p42A7) _ ——
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Physical interpretation
At the horizon and infinity: Xo(¢t,7) o< e~™(£m)

= Propagation of



Schrodinger equation

Going back to the original variables

Summing up the change of variables:

d .
ho = <1 - H)waxial +r Vaxil
r dr.
hi ir? d2).yi
w - r—= Md’axial - dTa;lal + (wz - Vaxiat(r)) Yaxial = 0
3u? + 3 ur + 2r° (A + 1) d¥polar 901
- 2r2(3p + 2Ar) et = dry dis =+ (& = Vootar(r)) Ypotar = 0

. ) 3ip ir?  dipol
— = |t ‘,U / - wpotar_,iﬂ
w 2(r—p)  2u+2Ar r— g dr
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Schrodinger equation

Summary: computation of modes in GR

0dd parity: .
. . Master equation:
X’=<* . X Y'+ W= Va)Y =0

Linearized . / Fully \
Fix Separate

Einstein's —— decoupled} Numerics

by parit
equations gauge B |y\ system /

Even parity: <
. s Master equation:
X'Z( )X Y'+ (w2 = V)Y =0

* %
1



> Schrodinger equation  Rotating black holes

Newman-Penrose formalism

No equivalent of RW gauge for rotating BH perturbation

Separation of Kerr perturbations
- Use of Newman-Penrose formalism

- Perturbation of 5 NP scalars, 12 spin coefficients, 4 tetrad components

- Computational tour de force: complete reduction of system to separated
radial and angular equations for both polar and axial perturbations
(Teukolsky equation) [Teukolsky+72] [Chandrasekhar+85]

- Polar perturbations: W, axial perturbations: Wy

12



From GR to modified gravity



DHOST theories

DHOST: principle of construction

- DHOST: Degenerate Higher-Order Scalar-Tensor

- Add scalar field ¢ + higher-derivatives to break Lovelock

- Degeneracy conditions to ensure only one additional degree of freedom
- Action contains first and second derivatives of ¢

- Obtain all possible terms and classify by powers of derivatives

. Orders 0 and .
DHOST = + : 5)2 3
0S GR | x |Coupling 1in UV + | (VV)? | + [ (VV)

13



DHOST theories Re

Lagrangian building blocks

10
Slguv, 9] = / d*zv/=g <F2R + P+ Q0¢ + + F3G* s + ) B¢L§5)> ,

i=1
¢,u = v,u¢a d);w = v,uszb, X = gf)“gb“

Cubic terms
19 =g, L =(0¢)? ¥ =@¢)?, I = ¢ue"0s
LY = ¢"$¢"06, ... LY = ¢’ e,

All functions depend on ¢ and X (only X if shift-symmetric) ”



DHOST theories Regge-Wheeler gauge a scalar Modified axial Schrodinger ec

General form of black hole solutions

Metric sector
1

ds® = —A(r) dt* + B0

dr? + C(r) dQ?
Scalar sector
o(t,r) = qt + ()

- Choose specific form for DHOST functions A;, B;, etc.
- Escape no-hair theorems

15



DHOST theories

Illustrative solutions

Only quadratic | ¢ =0 A(r)(= B(r)) Remarks
Stealth 7 X | — = X lscon-
r stant
2
BCL [Babichev+17] v v 1-— E_ EL
r_ 272
ol Motivated
4dEGB [Lu+20] X v — H = from higher
L+ 1 +4ap/m | Gimensions
ESGB [Julié+9] X /| 1= B4 apr)e2 4. | Known only
r as expansion
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DHOST theories Regge-Wheeler gauge with a scalar Modified axial Schrodinger ec

General setup

Perturbations of the metric

guuzguu+huua QZ):QE"_(;QS
G dz* dz” = —A(r) de* +dr? /B(r) + C(r)dQ* , ¢ = gt +(r)

Difficulties arising in modified gravity
- Coupling between scalar mode and gravitational mode
- More free functions in the action

- New timelike direction V¢ in some cases

17



Regge-Wheeler gauge with a scalar

Axial modes

Axial modes: odd-parity perturbations
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Polar modes: even-parity perturbations
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Regge-Wheeler gauge with a scalar

What changes in modified gravity

0dd parity:
X/

*

Linearized /
modified Fix Separate
gravity  gauge by parity
equations S
Even parity:
* % %
* kX

New even scalar mode X =
. . k

coupled to gravitation
K k

Master equation:
* k —_
( . X Y'+ (- V)Y =0

— Numerics

In general:
no decoupling,

usual numerics

not possible
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Modified axial Schrodinger equation

Modified Schrodinger equation

- Obtain form of first-order system for axial perturbations for any DHOST
[Langlois+22]:

/ . . .xg .
Moo () = <C’ /C+iw¥  —iw” + 21)@/0)

—il A+ w¥

- Modified propagation speed and effective potential from ¥, ®, I" and A
- Many divergences at black hole horizon

- Not coordinate invariant quantities

20



Modified axial Schrodinger equation

Expression of building functions

1 1 A
F=AF, — (¢ + AX)A; — §AB¢/X/F3X — 5Bw’(AX)/BQ - ﬁ(Bw’)SX’B

F 1 1 cx) 1
5 =P XA — 5 BYX'Fyx — wa’uBQ — 5 B XX'Bs,

f\If—qwlArl- (Bwa) Fix _1_2(142()3 Iy (B2¢'4) B

<2q2A1 L 2AF, + ABY X' Fax + ¢ B 4 q23¢’X’BG) ,

02
r=uv2+ i

2ABF

5 G
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ar Modified axial Schrodinger equation  Effe

Modified potential

Generalized change of variables — generalized Schrodinger equation

A9 aial w? dr
d;i;a + <02 - a><|al( ))wamal 5. =N

Ir'e
Vaxial(r) = 2’”’2/\? + n2 V(][TL, Cv Fa A]

Physical interest Main subtility

Possibility to study perturbations in Expression of Via IS

a manner very similar to GR! as it depends
on n.

= find a way to obtain coordinate-independant statements? 29



eeler sauge a scalar Modified axial Sch

Equivalence with spin 2 in GR

Propagation of
axial perturbations
in cubic DHOST with

metric g,

Effective metric

ydinger equation  Effective metric of axial perturbations

Propagation of axial
massless spin 2 in GR
with metric g,

ds? = g datdz” = A (- dt,® +dnr? + gd92>

dt, =dt — Udr ,

V ABdr* = @l

(4, Band C too complex to write here)

23



s Regge-Wheeler gauge a scalar Modified axial Schrodinger equation  Effective metric of axial perturbations

Properties of the effective metric

Stealth black hole
- Effective metric is still a stealth BH metric

- However, the horizon of this BH is [Tomikawa+21]

4dEGB black hole
- The effective metric is not a black hole metric

instead of horizon

EsGB and BCL black holes
No issue for the effective metric

24



Love numbers and QNMs




Definition of Love numbers  Definition of QNM ymputation techn

Tidal deformations

Love number: definition
Ratio between the linear response to an external static field and the field itself

Computation Properties
- Set w = 0 in master equation - All numbers are zero for D =4
- BC at horizon: regularity Schwarzschild [Hui+21], linked to
- BC at infinity: normalization TS |26 S22
- Identify linear response with - e lohger brie in medified eravity
subleading order at infinity theories [Cardoso+17] and for D = 4

Kerr [Tiec+21]

- Detectable in late inspiral phase



ve numbe Definition of QNMs ymputatio

As an eigenvalue problem

horizon
=
Q
<
D
[%2]

radius

- 2 boundary conditions: eigenvalue problem (similar to plucked string)
- Complex spectrum due to energy loss
- Depend on background and theory: very interesting test!

Differential operator is not self-adjoint due to complex boundary conditions
Choosing physical boundary conditions not always possible [Noui+23] 26



ve numbe Definition of QNMs ymputatio

Definition from Green function

Setup
: : . 0%y 0%
Differential equation on (¢, ry): oz "o Vi =0

- Initial data (0, r) localized in 7,

= compute ¥(t, ry) using Laplace transform

Initial data
1 e+i0c0 +o0o h

Y(t, ) = ds e’ / dr’ G(s,re, 7" )I(s,7")

278 Je—ioo 2 OOJ
Green's function

27



Definition of QNMs

Green function: complex integration

Various contributions in the complex plane [Nollert+99]

Im(s)
——_

Initial pulse «<—
Tail <
QNMs N X
\\X
L >—

QNMs are the same as defined before! 28



Definition of QNMs

Example of signal

Integration of the Schrodinger equation [Nollert+99]

Damped sinusoid

o)l (sum of QNMs)

1072 A

=4 _|

My
Initial pulse 10-5 4 rmw /-> Power-law tail
WW\\

1075 1

T T T T T T
400 425 450 475 500 525 1/2Me

However: this is not exactly the ringdown signal (non-linearities, spectral
instabilities...) 29



ve numbe efinitior ONMs  Computation techniques of QNMs

Direct integration

From the horizon From infinity
Integrate equation with Integrate equation with
_ MATCHING .
(e = —00) o e = W(th_,bs) =0 > P(re — +00) ox ™
— solution ¢_ — solution ¢4

- Easy to implement
- High numerical instability: rounding errors feed parasite solutions et at
the horizon and e~®"= at infinity [Chandrasekhar+75]

30



ve numbe efinitior ONMs  Computation techniques of QNMs

Continued fraction

Main idea
* AnsSatz (1) = Yoo (1) X Yporiz(r) % f(1)
- Decompose f as power series: f(r) = Zi% n(r;,fh)n

- Look for w such that f is bounded

- Get recurrence relation for f,: anfutr1 + Bufo + Ynfu-1 =0

- fis bounded when one has: [Gautschi+67; Leaver+97]

Bo M a1y 273

o Pi— Po— B3—
— continued fraction equation

- Can compute QNMs precisely at nearly any overtone 3



Computation techniques of QNMs

Qualitative interpretation Quantitative realisation

Understand QNMs as waves trapped in Decompose V — w? around rMax :
the light ring (corresponding to the max

1
of V) and slowly leaking out V—w?=Q+ 5@62)(7”* — )24

- Proposed in [Goebel+72], improved in [lyer+87; lyer+87] and [Konoplya+03]
- Main advantage: QNMs as roots of algebraic equation
- Works better at high /¢

32



efinition of Love numbe )€ of ONMs  Computation techniques of QNMs

Monodromy

Main idea
- Extend the master equation to a complex 7

- Solve in the regime Re(w) < Im(w): w € iR
- Make use of the analyticity of the solution ¥

- BC at » = u: monodromy of function around
singularity

- BCat r = oo: imposed on line Re(r,) = 0 (e*™r
bounded)

- Recover asymptotic regime of QNMs: [Motl+03]

2nMwy, =1In(3) + (2n+ 1)iw

Contour used

33



Computation techniques of QNMs

Comparison of methods

Method Analytical | Difficulty | Modes computable Validity
Direct integration X + ~ 10 Low n
Continued fraction X et ~ 103 Anywhere
WKB v = ~ 10 Low n, high ¢
Monodromy v + Asymptote High n

34



Properties of the QNM spectrum




Schwarzschild QNM spectrum

Positions of the modes

Schwarzschild spectrum obtained with continued fraction method [Berti+09]
50— —

N
o
T T T
1
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Schwarzschild QNM spectrum  QNMs in modified gra

Main properties of the spectrum

Stability Asymptote

All modes have Im(w) < 0: perturbations ~ Vertical asymptote independant of /,
exponentially decreasing in time coherent with the monodromy method
Algebraically special Isospectrality

For each £ one mode has Re(w) = 0: Values of w for axial and polar
algebraically special mode, linked to perturbations are . linked to

exact Robinson-Trautman solution [Qi+93]  specific symmetry between Viiy and
Volar [Chandrasekhar+85]

36



arzschild QNM spectrum  QNMs in modified gravity

Main challenges

Coupling of even modes Boundary conditions Spectral instability

Polar perturbations Not all potentials have Positions of the modes

couple with scalar: can ingoing and outgoing vary in an arbitrarily

only get coupled wave solutions at large manner when

Schrodinger equations horizon and infinity deviating from GR
[Jaramillo+21]

In general: might not
get Schrodinger
formulation even for
odd perturbations (ex: !
MTMG) g

12

. .
- &l8Vil[, =105k =20 o
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QNMs in modified gravity

Existing results

- Computation of QNMs: done for the axial sector in various setups, but no
study of asymptotes via monodromy technique

- Polar QNMs: obtained for EsGB [Blazquez-Salcedo+17]

- QNMs of slowly rotating EsGB [Pierini+22]

- Proposed methods for dealing with coupled systems [Hui+22; Langlois+21]

- EFT formulation of scalar-tensor [Mukohyama+22; Mukohyama+22; Mukohyama+23]
- Parametrized QNM spectrum [Cardoso+19; McManus+19]

- Inverse problem: recovering metric from QNMs [Vélkel+20]

38



Topics for discussion

- Relative importance of QNM overtones vs quadratic perturbations in the
ringdown

- Love numbers in modified gravity

- Application of the monodromy method to rotating modified BH

- Possibility to generalize Teukolsky equation to modified BH

- Are there modified gravity theories in which the symmetries of the QNM
spectrum are maintained?

39



Thank you for your attention!



New black holes in DHOST: stealth solution

Metric sector: Scalar sector

ds? = —(1—p/r)d®+(1—p/r)~" dr? 412 dQ° ¢ = qt+y(r)

X=-¢=¢(r)= qﬂ

Properties
- Metric sector: similar to Schwarzschild, time-dependant scalar field

- X = cst = functions of X reduced to constants

40



Effective metric for stealth Schwarzschild

ds? = —A(r) A + ()dr +r2d0? A(r)=1-Y

r r
~2_ _@_1 2 2 102
d3 ( <( )dt* ( r) dr +rd$2>,
(=¢A1=cst, r,=(1+u

Properties
- Corresponds to Schwarzschild BH with R = (1 +¢)Y4rand T = (1 + ¢)~ V4.
- Horizon at R = (1 + ¢)%/4y, corresponding to r = r, #

- The horizon seen by axial perturbations is [Tomikawa+21]
41



Lightcones for stealth Schwarzschild

Lightcone for r > 7, Lightcone for u < r < ry

= metrics are compatible despite the shift of horizon! W



New black holes in Horndeski: EGB theory

Einstein-Gauss-Bonnet Lagrangian:

g — / APz /=g(R + o (Ryuvpo R*P° — 4R, R + R))

Gauss-Bonnet term G

Compactification procedure [Lu+20]
(6]
D—4
Take D — 4: get of parameters of Horndeski given by

dsp =ds + €2?d¥? and o =

F(X)=1-2aX P(X)=2aX?, Q(X)=—-4aX, G(X)=—4aln(X)
43



New black holes in Horndeski: EGB solution

Metric sector Scalar sector
ds® = —A(r)dt* + A(l) dr? + r2d0? ¢ =(r)
T
A =1- 20y - 2 V==
T 1+ /1+4ap/r3 r

Properties

- One horizon at r = r, = 1/2(u + /2 — 4a)

- Constant « verifies 0 < a < 7?

A



Effective metric for EGB

1 2
ds? = —A(r)de® + dr? +r2dQ2  A(r)=1-— Al
A(r) 14+ /1+4dap/r?
1 11/2 3, Y2
43 = —— NE a2+ 5 dr? + [ L2 q0?
r 73 Al 23

- 1 and 3 are nonzero functions

- v has azero at rn, = 2au
- Ais zero at rp, only
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Behaviour at the coordinate singularities

Atr=ry,

7(7‘ T dr® + 7“ T dQ2

= the Ricci scalar is singular at » = r,: curvature singularity at the horizon

d3? ~ —e1(r — )4 de? +

Atr=mnr
A3 ~ —cy(r — )2 dt2 + c5(r — 1)%2dr? + co(r — 1) /% dQ?
= the Ricci scalar is singular at » = r»: another curvature singularity

Property
The axial modes propagate in a metric with naked singularities
46
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