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Outline

1. Perturbation framework in GR: recovering a master equation
2. Generalisation to modified gravity: what is known and what is not
3. Quasinormal modes: definition, computation, properties
4. Discussion
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Perturbation framework in GR



Regge-Wheeler gauge Schrödinger equation Rotating black holes

General setup

Perturbations of the metric

gµν = ḡµν + hµν
ḡµν dxµ dxν = −A(r)dt2 + dr2 /B(r) + C(r)dΩ2

• Focus on gravitational perturbations: main conclusions still valid for
scalar/spinor/vector perturbations

• Work initially done in [Regge+57; Zerilli+70]

• Decompose hµν as SVT on the 2-sphere
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Regge-Wheeler gauge Schrödinger equation Rotating black holes

Metric components

Axial modes: odd-parity perturbations

hµν =


1

sin θ
h0(r) ∂ϕ − sin θ h0(r) ∂θ

1
sin θ

h1(r) ∂ϕ − sin θ h1(r) ∂θ
sym sym 1

sin θ
h2(r)(∂θ∂ϕ−cotan θ∂ϕ) − sin θ h2(r)( `(`+1)

2 −∂2
θ )

sym sym sym − sin θ h2(r)(∂θ∂ϕ−cotan θ∂ϕ)

Y`me−iωt

Polar modes: even-parity perturbations

hµν =

A H0(r) H1(r) β(r)∂θ β(r)∂ϕ
sym B−1 H2(r) α(r)∂θ α(r)∂ϕ
sym sym K(r)+G(r)∂2

θ −G(r) cotan θ∂ϕ

sym sym sym sin2(θ)K(r)+G(r)(∂2
ϕ+sin θ cos θ∂θ)

Y`me−iωt
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Regge-Wheeler gauge Schrödinger equation Rotating black holes

Separating the degrees of freedom

1. Start with the Einstein-Hilbert action

S [gµν ] =
∫

d4x
√
−g R

2. Impose static spherically symmetric background
3. Perturb the metric: gµν = ḡµν + hµν , inject RW gauge and linearise Einstein’s
equations

⇒ obtain 10 equations for 10 functions
4. The system separates by parity: polar (even) and axial (odd) modes
5. Gauge fixing via hµν −→ hµν +∇µξν +∇νξµ: can set h2, α, β and G to zero

• Polar modes: 7 equations for K , H0, H1, H2

• Axial modes: 3 equations for h0, h1 4



Regge-Wheeler gauge Schrödinger equation Rotating black holes

Reducing the number of equations

Two systems with more equations than variables→ overconstrained?

Axial modes
• 2 first-order equations
• 1 second-order equation

Polar modes
• 4 first-order equations
• 2 second-order equations
• 1 algebraic equation

Interestingly, each system is equivalent to a 2-dimensional system [Regge+57;

Zerilli+70]
dXaxial

dr
= Maxial(r)Xaxial ,

dXpolar
dr

= Mpolar(r)Xpolar
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Regge-Wheeler gauge Schrödinger equation Rotating black holes

Final system of equations

Axial modes

Xaxial =
t
(

h0 h1/ω
)

Maxial =

(
2
r 2iλ r−µ

r3 − iω2

− r2

(r−µ)2 − µ
r(r−µ)

)

Polar modes

Xpolar =
t
(

K H1/ω
)

Mpolar =
1

3µ+ 2λr

a11(r)+b11(r)ω2

r(r−µ)
a12(r)+b12(r)ω2

r2

a21(r)+b21(r)ω2

2(r−µ)2
a22(r)+b22(r)ω2

r(r−µ)


(set 2(λ+ 1) = `(`+ 1))

⇒ goal to achieve: simplify these complicated differential systems
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Regge-Wheeler gauge Schrödinger equation Rotating black holes

Effect of a change of variables

Changing the functions in X is not a change of basis for M !

Change of variables
dX
dr

= M (r)X , X = P(r)X̃

dX̃
dr

= M̃ (r)X̃ , M̃ = P−1MP − P−1 dP
dr

Main idea: find a change of variables that will put the equation into a better form
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Regge-Wheeler gauge Schrödinger equation Rotating black holes

Usual change of variables: propagation equation

Canonical form for M̃ :

M̃ = n(r)

(
0 1

V (r)− ω2

c2 0

)

Physical interpretation


dX̃0
dr∗

= X̃1 ,

dX̃1
dr∗

= (V (r)− ω2/c2)X̃0

⇒ d2X̃0
dr2

∗
+

(
ω2

c2 − V (r)
)

X̃0 = 0 , dr
dr∗

= n(r)

Schrödinger equation with potential V

r∗: “tortoise coordinate”, r = µ −→ r∗ = −∞ and r = +∞ −→ r∗ = +∞ 8



Regge-Wheeler gauge Schrödinger equation Rotating black holes

Interpretation of the equations

Axial case:

Paxial =

(
1 − µ/r r

ir2/(r − µ) 0

)
, c = 1

Polar case:

Ppolar =

(
3µ2+3λµr+2r2λ(λ+1)

2r2(3µ+2λr)
1

−i+ iµ
2(r−µ)

+ 3iµ
2µ+2λr − ir2

r−µ

)
, c = 1
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Physical interpretation

At the horizon and infinity: X0(t, r) ∝ e−iω(t±r∗)

⇒ Propagation of waves 9



Regge-Wheeler gauge Schrödinger equation Rotating black holes

Going back to the original variables

Summing up the change of variables:

h0 =
(

1 − µ

r

)
ψaxial + r dψaxial

dr∗
h1

ω
=

ir2

r − µ
ψaxial

K =
3µ2 + 3λµr + 2r2λ(λ+ 1)

2r2(3µ+ 2λr)
ψpolar +

dψpolar
dr∗

H1

ω
=

[
−i + iµ

2(r − µ)
+

3iµ
2µ+ 2λr

]
ψpolar −

ir2

r − µ

dψpolar
dr∗

⇒
d2ψaxial

dr2
∗

+
(
ω2 − Vaxial(r)

)
ψaxial = 0

d2ψpolar
dr2

∗
+
(
ω2 − Vpolar(r)

)
ψpolar = 0
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Regge-Wheeler gauge Schrödinger equation Rotating black holes

Summary: computation of modes in GR

Linearized
Einstein’s
equations

Fix
gauge

Separate
by parity

Odd parity:

X ′ =

(
∗ ∗
∗ ∗

)
X

Even parity:

X ′ =

(
∗ ∗
∗ ∗

)
X

Master equation:
Y ′′ + (ω2 − Va)Y = 0

Master equation:
Y ′′ + (ω2 − Vp)Y = 0

Numerics
Fully

decoupled
system
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Regge-Wheeler gauge Schrödinger equation Rotating black holes

Newman-Penrose formalism

No equivalent of RW gauge for rotating BH perturbation

Separation of Kerr perturbations
• Use of Newman-Penrose formalism
• Perturbation of 5 NP scalars, 12 spin coefficients, 4 tetrad components
• Computational tour de force: complete reduction of system to separated
radial and angular equations for both polar and axial perturbations
(Teukolsky equation) [Teukolsky+72] [Chandrasekhar+85]

• Polar perturbations: δΨ0, axial perturbations: δΨ4
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From GR to modified gravity



DHOST theories Regge-Wheeler gauge with a scalar Modified axial Schrödinger equation Effective metric of axial perturbations

DHOST: principle of construction

• DHOST: Degenerate Higher-Order Scalar-Tensor
• Add scalar field φ + higher-derivatives to break Lovelock
• Degeneracy conditions to ensure only one additional degree of freedom
• Action contains first and second derivatives of φ
• Obtain all possible terms and classify by powers of derivatives

DHOST = GR × Coupling +
Orders 0 and
1 in ∇∇φ

+ (∇∇φ)2 + (∇∇φ)3
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DHOST theories Regge-Wheeler gauge with a scalar Modified axial Schrödinger equation Effective metric of axial perturbations

Lagrangian building blocks

S [gµν , φ] =
∫

d4x
√
−g

(
F2R + P + Q�φ+

5∑
i=1

AiL(2)
i + F3Gµνφµν +

10∑
i=1

BiL(3)
i

)
,

φµ = ∇µφ , φµν = ∇µ∇νφ , X = φµφ
µ

Quadratic terms

L(2)
1 = φµνφ

µν , L(2)
2 = (�φ)2

L(2)
3 = φµφµνφ

ν�φ , ...

Cubic terms

L(3)
1 = (�φ)3 , L(3)

2 = φµνφ
µν�φ

L(3)
3 = φµνφ

νρφνρ , ...

All functions depend on φ and X (only X if shift-symmetric) 14



DHOST theories Regge-Wheeler gauge with a scalar Modified axial Schrödinger equation Effective metric of axial perturbations

General form of black hole solutions

Metric sector

ds2 = −A(r)dt2 +
1

B(r)
dr2 + C(r)dΩ2

Scalar sector

φ(t, r) = qt + ψ(r)

• Choose specific form for DHOST functions Ai , Bi , etc.
• Escape no-hair theorems
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DHOST theories Regge-Wheeler gauge with a scalar Modified axial Schrödinger equation Effective metric of axial perturbations

Illustrative solutions

Only quadratic q = 0 A(r)(= B(r)) Remarks

Stealth 3 7 1 − µ

r
X is con-
stant

BCL [Babichev+17] 3 3 1 − µ

r
− ξµ2

2r2

4dEGB [Lu+20] 7 3 1 − 2µ/r
1 +

√
1 + 4αµ/r3

Motivated
from higher
dimensions

EsGB [Julié+19] 7 3 1 − µ

r
+ a2(r)ε2 + ...

Known only
as expansion
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DHOST theories Regge-Wheeler gauge with a scalar Modified axial Schrödinger equation Effective metric of axial perturbations

General setup

Perturbations of the metric

gµν = ḡµν + hµν , φ = φ̄+ δφ

ḡµν dxµ dxν = −A(r)dt2 + dr2 /B(r) + C(r)dΩ2 , φ̄ = qt + ψ(r)

Difficulties arising in modified gravity
• Coupling between scalar mode and gravitational mode
• More free functions in the action
• New timelike direction ∇µφ in some cases
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DHOST theories Regge-Wheeler gauge with a scalar Modified axial Schrödinger equation Effective metric of axial perturbations

Axial modes

Axial modes: odd-parity perturbations

hµν =


1

sin θ
h0(r) ∂ϕ − sin θ h0(r) ∂θ

1
sin θ

h1(r) ∂ϕ − sin θ h1(r) ∂θ
sym sym 1

sin θ
h2(r)(∂θ∂ϕ−cotan θ∂ϕ) − sin θ h2(r)( `(`+1)

2 −∂2
θ )

sym sym sym − sin θ h2(r)(∂θ∂ϕ−cotan θ∂ϕ)

Y`me−iωt , δφ = 0

Polar modes: even-parity perturbations

hµν =

A H0(r) H1(r) β(r)∂θ β(r)∂ϕ
sym B−1 H2(r) α(r)∂θ α(r)∂ϕ
sym sym K(r)+G(r)∂2

θ −G(r) cotan θ∂ϕ

sym sym sym sin2(θ)K(r)+G(r)(∂2
ϕ+sin θ cos θ∂θ)

Y`me−iωt ,

δφ = δϕ(r)Y`me−iωt
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DHOST theories Regge-Wheeler gauge with a scalar Modified axial Schrödinger equation Effective metric of axial perturbations

What changes in modified gravity

Linearized
modified
gravity

equations

Fix
gauge

Separate
by parity

Odd parity:

X ′ =

(
∗ ∗
∗ ∗

)
X

Even parity:

X ′ =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

X

Master equation:
Y ′′ + (ω2 − Vo)Y = 0 Numerics

In general:
no decoupling,
usual numerics
not possible

New even scalar mode
coupled to gravitation

19



DHOST theories Regge-Wheeler gauge with a scalar Modified axial Schrödinger equation Effective metric of axial perturbations

Modified Schrödinger equation

• Obtain form of first-order system for axial perturbations for any DHOST
[Langlois+22]:

Maxial(r) =

(
C ′/C + iωΨ −iω2 + 2iλΦ/C

−iΓ ∆+ iωΨ

)

• Modified propagation speed and effective potential from Ψ, Φ, Γ and ∆

• Many divergences at black hole horizon
• Not coordinate invariant quantities
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DHOST theories Regge-Wheeler gauge with a scalar Modified axial Schrödinger equation Effective metric of axial perturbations

Expression of building functions

F = AF2 − (q2 + AX)A1 −
1
2

ABψ′X ′F3X − 1
2

Bψ′(AX)′B2 −
A
2B

(Bψ′)3X ′B6 ,

F
Φ

= F2 − XA1 −
1
2

Bψ′X ′F3X − 1
2

Bψ′ (CX)′

C
B2 −

1
2

Bψ′XX ′B6 ,

FΨ = qψ′A1 +
q
2
(
Bψ′2)′ F3X +

q
2
(AX)′

A
B2 +

q
4
(
B2ψ′4)′ B6 ,

Γ = Ψ2 +
1

2ABF

(
2q2A1 + 2AF2 + ABψ′X ′F3X + q2 (AX)′

Aψ′ B2 + q2Bψ′X ′B6

)
,

∆ = −F ′

F
− B′

2B
+

A′

2A
= − d

dr

(
ln

(√
B
A
F

))
.
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DHOST theories Regge-Wheeler gauge with a scalar Modified axial Schrödinger equation Effective metric of axial perturbations

Modified potential

Generalized change of variables→ generalized Schrödinger equation

d2ψaxial
dr2

∗
+

(
ω2

c2 − Vaxial(r)
)
ψaxial = 0 , dr

dr∗
= n

Vaxial(r) = 2n2λ
ΓΦ

C
+ n2V0[n,C ,Γ,∆]

Physical interest
Possibility to study perturbations in
a manner very similar to GR!

Main subtility
Expression of Vaxial is
coordinate-dependant as it depends
on n.

⇒ find a way to obtain coordinate-independant statements? 22



DHOST theories Regge-Wheeler gauge with a scalar Modified axial Schrödinger equation Effective metric of axial perturbations

Equivalence with spin 2 in GR

Propagation of
axial perturbations
in cubic DHOST with

metric gµν

Propagation of axial
massless spin 2 in GR

with metric g̃µν

Effective metric

ds̃2 = g̃µν dxµ dxν = Ã

(
−dt∗2 + dr∗2 +

C̃
Ã

dΩ2

)
dt∗ = dt −Ψdr ,

√
ÃB̃ dr∗ = dr

(Ã, B̃ and C̃ too complex to write here) 23



DHOST theories Regge-Wheeler gauge with a scalar Modified axial Schrödinger equation Effective metric of axial perturbations

Properties of the effective metric

Stealth black hole
• Effective metric is still a stealth BH metric
• However, the horizon of this BH is displaced [Tomikawa+21]

4dEGB black hole
• The effective metric is not a black hole metric
• Naked singularity instead of horizon

EsGB and BCL black holes
No issue for the effective metric
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Love numbers and QNMs



Definition of Love numbers Definition of QNMs Computation techniques of QNMs

Tidal deformations

Love number: definition
Ratio between the linear response to an external static field and the field itself

Computation
• Set ω = 0 in master equation
• BC at horizon: regularity
• BC at infinity: normalization
• Identify linear response with
subleading order at infinity

Properties
• All numbers are zero for D = 4
Schwarzschild [Hui+21], linked to
symmetry [Ben Achour+22]

• No longer true in modified gravity
theories [Cardoso+17] and for D = 4
Kerr [Tiec+21]

• Detectable in late inspiral phase
25



Definition of Love numbers Definition of QNMs Computation techniques of QNMs

As an eigenvalue problem

ho
riz
on

radius

ingoing outgoingwaves

• 2 boundary conditions: eigenvalue problem (similar to plucked string)
• Complex spectrum due to energy loss
• Depend on background and theory: very interesting test!

Possible issues
• Differential operator is not self-adjoint due to complex boundary conditions
• Choosing physical boundary conditions not always possible [Noui+23] 26



Definition of Love numbers Definition of QNMs Computation techniques of QNMs

Definition from Green function

Setup

• Differential equation on ψ(t, r∗):
∂2ψ

∂r2
∗
− ∂2ψ

∂t2 − Vψ = 0

• Initial data ψ(0, r) localized in r∗

⇒ compute ψ(t, r∗) using Laplace transform

ψ(t, r∗) =
1

2πi

∫ ε+i∞

ε−i∞
ds est

∫ +∞

−∞
dr ′ G(s, r∗, r ′)I (s, r ′)

Green’s function

Initial data

27



Definition of Love numbers Definition of QNMs Computation techniques of QNMs

Green function: complex integration

Various contributions in the complex plane [Nollert+99]

ψ(t, r∗)

Tail

QNMs

Initial pulse

QNMs are the same as defined before! 28



Definition of Love numbers Definition of QNMs Computation techniques of QNMs

Example of signal

Integration of the Schrödinger equation [Nollert+99]

Initial pulse

Damped sinusoid
(sum of QNMs)

Power-law tail

However: this is not exactly the ringdown signal (non-linearities, spectral
instabilities...) 29



Definition of Love numbers Definition of QNMs Computation techniques of QNMs

Direct integration

From the horizon
Integrate equation with

ψ(r∗ → −∞) ∝ e−iωr∗

→ solution ψ−

↔
MATCHING

W (ψ−, ψ+) = 0 ↔

From infinity
Integrate equation with

ψ(r∗ → +∞) ∝ eiωr∗

→ solution ψ+

• Easy to implement
• High numerical instability: rounding errors feed parasite solutions e+iωr∗ at
the horizon and e−iωr∗ at infinity [Chandrasekhar+75]
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Definition of Love numbers Definition of QNMs Computation techniques of QNMs

Continued fraction

Main idea
• Ansatz ψ(r) = ψ∞(r)× ψhoriz(r)× f (r)
• Decompose f as power series: f (r) =

∑+∞
n=0 fn

( r−rh
r
)n

• Look for ω such that f is bounded

• Get recurrence relation for fn : αnfn+1 + βnfn + γnfn−1 = 0
• f is bounded when one has: [Gautschi+67; Leaver+97]

β0
α0

=
γ1
β1−

α1γ2
β2−

α2γ3
β3−

...

→ continued fraction equation
• Can compute QNMs precisely at nearly any overtone 31



Definition of Love numbers Definition of QNMs Computation techniques of QNMs

WKB

Qualitative interpretation
Understand QNMs as waves trapped in
the light ring (corresponding to the max
of V ) and slowly leaking out

Quantitative realisation
Decompose V − ω2 around rmax∗ :

V − ω2 = Q0 +
1
2

Q(2)
0 (r∗ − rmax∗ )2 + ...

• Proposed in [Goebel+72], improved in [Iyer+87; Iyer+87] and [Konoplya+03]

• Main advantage: QNMs as roots of algebraic equation
• Works better at high `

32



Definition of Love numbers Definition of QNMs Computation techniques of QNMs

Monodromy

Main idea
• Extend the master equation to a complex r∗
• Solve in the regime Re(ω) � Im(ω): ω ∈ iR
• Make use of the analyticity of the solution ψ

• BC at r = µ: monodromy of function around
singularity

• BC at r = ∞: imposed on line Re(r∗) = 0 (e±iωr∗

bounded)
• Recover asymptotic regime of QNMs: [Motl+03]

2πMωn = ln(3) + (2n + 1)iπ 33



Definition of Love numbers Definition of QNMs Computation techniques of QNMs

Comparison of methods

Method Analytical Difficulty Modes computable Validity

Direct integration 7 + ∼ 10 Low n

Continued fraction 7 +++ ∼ 103 Anywhere

WKB 3 - ∼ 10 Low n, high `

Monodromy 3 + Asymptote High n

34



Properties of the QNM spectrum



Schwarzschild QNM spectrum QNMs in modified gravity

Positions of the modes

Schwarzschild spectrum obtained with continued fraction method [Berti+09]
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Schwarzschild QNM spectrum QNMs in modified gravity

Main properties of the spectrum

Stability
All modes have Im(ω) < 0: perturbations
exponentially decreasing in time

Algebraically special
For each ` one mode has Re(ω) = 0:
algebraically special mode, linked to
exact Robinson-Trautman solution [Qi+93]

Asymptote
Vertical asymptote independant of `,
coherent with the monodromy method

Isospectrality
Values of ω for axial and polar
perturbations are identical: linked to
specific symmetry between Vaxial and
Vpolar [Chandrasekhar+85]
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Schwarzschild QNM spectrum QNMs in modified gravity

Main challenges

Coupling of even modes
Polar perturbations
couple with scalar: can
only get coupled
Schrödinger equations

In general: might not
get Schrödinger
formulation even for
odd perturbations (ex:
MTMG)

Boundary conditions
Not all potentials have
ingoing and outgoing
wave solutions at
horizon and infinity

Spectral instability
Positions of the modes
vary in an arbitrarily
large manner when
deviating from GR
[Jaramillo+21]
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Schwarzschild QNM spectrum QNMs in modified gravity

Existing results

• Computation of QNMs: done for the axial sector in various setups, but no
study of asymptotes via monodromy technique

• Polar QNMs: obtained for EsGB [Blázquez-Salcedo+17]

• QNMs of slowly rotating EsGB [Pierini+22]

• Proposed methods for dealing with coupled systems [Hui+22; Langlois+21]
• EFT formulation of scalar-tensor [Mukohyama+22; Mukohyama+22; Mukohyama+23]
• Parametrized QNM spectrum [Cardoso+19; McManus+19]

• Inverse problem: recovering metric from QNMs [Völkel+20]
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Topics for discussion

• Relative importance of QNM overtones vs quadratic perturbations in the
ringdown

• Love numbers in modified gravity
• Application of the monodromy method to rotating modified BH
• Possibility to generalize Teukolsky equation to modified BH
• Are there modified gravity theories in which the symmetries of the QNM
spectrum are maintained?

39



Thank you for your attention!
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New black holes in DHOST: stealth solution

Metric sector: mimic GR

ds2 = −(1−µ/r)dt2+(1−µ/r)−1 dr2+r2 dΩ2

Scalar sector

φ = qt + ψ(r)

X = −q2 ⇒ ψ′(r) = q
√rµ
r − µ

Properties
• Metric sector: similar to Schwarzschild, time-dependant scalar field
• X = cst ⇒ functions of X reduced to constants

40



Effective metric for stealth Schwarzschild

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2 dΩ2 A(r) = 1 − µ

r

ds̃2 =
√

1 + ζ

(
− 1

1 + ζ

(
1 −

rg
r

)
dt∗2 +

(
1 −

rg
r

)−1
dr2 + r2 dΩ2

)
,

ζ = q2A1 = cst , rg = (1 + ζ)µ

Properties
• Corresponds to Schwarzschild BH with R = (1 + ζ)1/4r and T = (1 + ζ)−1/4t∗
• Horizon at R = (1 + ζ)5/4µ, corresponding to r = rg 6= µ

• The horizon seen by axial perturbations is displaced [Tomikawa+21]
41



Lightcones for stealth Schwarzschild

Lightcone for r > rg Lightcone for µ < r < rg

⇒ metrics are compatible despite the shift of horizon!
42



New black holes in Horndeski: EGB theory

Einstein-Gauss-Bonnet Lagrangian:

S =

∫
dDx

√
−g(R + α′(RµνρσRµνρσ − 4RµνRµν + R2︸ ︷︷ ︸

Gauss-Bonnet term G

))

Compactification procedure [Lu+20]

dsD = ds + e2φ dΣ2 and α′ =
α

D − 4
Take D −→ 4: get motivated choice of parameters of Horndeski given by

F(X) = 1 − 2αX P(X) = 2αX2 , Q(X) = −4αX , G(X) = −4α ln(X)
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New black holes in Horndeski: EGB solution

Metric sector

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2 dΩ2

A(r) = 1 − M (r)
r

, M (r) = 2µ
1 +

√
1 + 4αµ/r3

Scalar sector

φ = ψ(r)

ψ′(r) = −1 +
√

A
r
√

A

Properties

• One horizon at r = rh = 1/2(µ+
√
µ2 − 4α)

• Constant α verifies 0 ≤ α ≤ r2
h
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Effective metric for EGB

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2 dΩ2 A(r) = 1 − 2µ/r

1 +
√

1 + 4αµ/r3

ds̃2 = − 1
r2

√
A1/2γ3

1γ2

γ3
3

dt∗2 +
1
r2

√
γ1γ

3
2

A5/2γ5
3

dr2 +

√
γ1γ2

A1/2γ3
dΩ2

• γ1 and γ3 are nonzero functions
• γ2 has a zero at r2 = 3

√
2αµ

• A is zero at rh only
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Behaviour at the coordinate singularities

At r = rh

ds̃2 ∼ −c1(r − rh)
1/4 dt∗2 +

c2

(r − rh)5/4 dr2 +
c3

(r − rh)1/4 dΩ2

⇒ the Ricci scalar is singular at r = rh : curvature singularity at the horizon

At r = r2

ds̃2 ∼ −c4(r − r2)
1/2 dt∗2 + c5(r − r2)

3/2 dr2 + c6(r − r2)
1/2 dΩ2

⇒ the Ricci scalar is singular at r = r2: another curvature singularity

Property
The axial modes propagate in a metric with naked singularities
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