Compact Objects in Scalar-Tensor theories

Athanasios Bakopoulos

School of Applied Mathematical and Physical Sciences
National and Technical University of Athens

AstroParticle Symposium 2023

November 9, 2023

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "3rd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers" (Project Number: 7212)

Outline

(1) Black Holes in General Relativity and the No-Hair Theorem
(2) No-Scalar Hair Theorem
(3) Black hole solutions in Horndeski and beyond Horndeski

4 Wormholes in General Relativity
(5) Wormhole solutions in beyond Horndeski theory

Based on:
JHEP 08 (2022), 055. \& arXiv:2310.11919
JHEP 04 (2022) 096 \& Phys.Rev.D 107 (2023) 12, 124035
JCAP 05 (2022) no.05, 022. arXiv:2111.09857
In collaboration with:
Nicolas Lecoeur, Panagiota Kanti, Christos Charmousis and Theodoros Nakas

Black Holes in General Relativity and the No-Hair Theorem

- Black holes in General Relativity may be described only by three physical quantities: Mass, E/M charge and Angular Momentum.
- Black holes are very special objects: Two stars with the same mass are, in general, very different, but two black holes with the same characteristics (M, Q and J) will be identical.
- No hair theorems: Uniqueness theorems which state that in General Relativity only four possible solutions for black holes may exist.

No-Scalar Hair Theorem

Adding new matter/energy forms in the theory could lead to new black holes solutions?

The simplest form is a Scalar field coupled to the gravitational field:

$$
S=\int d^{4} x \sqrt{-g}\left[R-\frac{1}{2} \nabla_{\mu} \Phi \nabla^{\mu} \Phi-V(\Phi)\right]
$$

Assumptions:

- Asymptotically flatness,
- The scalar field has the same symmetries with the spacetime,
- $V(\Phi)>0$.
- Minimal coupling.

Under these assumptions black holes with scalar hair do not exist ${ }^{1}$.

```
\({ }^{1}\) J. D. Bekenstein, Phys. Rev. Lett. 28 (1972) 452
J. D. Bekenstein, Phys. Rev. D 51 (1995) no. 12 R6608
```


Beyond Horndeski theory

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left(\mathcal{L}_{2}+\mathcal{L}_{3}+\mathcal{L}_{4}+\mathcal{L}_{5}+\mathcal{L}_{4}^{\mathrm{bH}}+\mathcal{L}_{5}^{\mathrm{bH}}\right)
$$

with

$$
\begin{aligned}
X= & -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi, \\
\mathcal{L}_{2}= & G_{2}(\phi, X), \quad \mathcal{L}_{3}=-G_{3}(\phi, X) \square \phi, \\
\mathcal{L}_{4}= & G_{4}(\phi, X) R+G_{4 X}\left[(\square \phi)^{2}-\nabla_{\mu} \partial_{\nu} \phi \nabla^{\mu} \partial^{\nu} \phi\right], \\
\mathcal{L}_{5}= & G_{5}(\phi, X) G_{\mu \nu} \nabla^{\mu} \partial^{\nu} \phi-\frac{1}{6} G_{5 X}\left[(\square \phi)^{3}-3 \square \phi \nabla_{\mu} \partial_{\nu} \phi \nabla^{\mu} \partial^{\nu} \phi\right. \\
& \left.+2 \nabla_{\mu} \partial_{\nu} \phi \nabla^{\nu} \partial^{\rho} \phi \nabla_{\rho} \partial^{\mu} \phi\right] \\
\mathcal{L}_{4}^{\mathrm{bH}}= & F_{4}(\phi, X) \varepsilon^{\mu \nu \rho \sigma} \varepsilon^{\alpha \beta \gamma}{ }_{\sigma} \partial_{\mu} \phi \partial_{\alpha} \phi \nabla_{\nu} \partial_{\beta} \phi \nabla_{\rho} \partial_{\gamma} \phi, \\
\mathcal{L}_{5}^{\mathrm{bH}}= & F_{5}(\phi, X) \varepsilon^{\mu \nu \rho \sigma} \varepsilon^{\alpha \beta \gamma \delta} \partial_{\mu} \phi \partial_{\alpha} \phi \nabla_{\nu} \partial_{\beta} \phi \nabla_{\rho} \partial_{\gamma} \phi \nabla_{\sigma} \partial_{\delta} \phi,
\end{aligned}
$$

and

$$
X G_{5 X} F_{4}=3 F_{5}\left(G_{4}-2 X G_{4 X}\right) .
$$

The Field Equations for the Shift-Symmetric theory

We focus on the shift symmetric case, therefore $G_{i}=G_{i}(X)$ and $F_{i}=F_{i}(X)$.
For a spherically symmetric line-element

$$
d s^{2}=-h(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} d \Omega^{2}
$$

The field equations of the beyond Horndeski theory are

$$
\begin{aligned}
& X^{\prime} \mathcal{A}=2\left(\frac{h^{\prime}}{h}-\frac{f^{\prime}}{f}\right) \mathcal{B} \\
& \frac{h^{\prime} f}{2 h} \mathcal{A}=G_{2 X} r^{2}+2 G_{4 X}-2 r f \phi^{\prime} G_{3 X}-2 f Z_{X} \\
& 2 f \frac{h^{\prime}}{h} \mathcal{B}=-G_{2} r^{2}-2 G_{4}-2 f Z
\end{aligned}
$$

with

$$
\begin{aligned}
& Z(X)=2 X G_{4 X}-G_{4}+4 X^{2} F_{4}, \quad Y(X)=\frac{1}{2}(-2 X)^{3 / 2} G_{5 X}+3(-2 X)^{5 / 2} F_{5} \\
& \mathcal{A}=4 r Z_{X}+\phi^{\prime}\left(r^{2} G_{3 X}+G_{5 X}\right)+2 \sqrt{f} Y_{X}, \quad \text { and } \quad \mathcal{B}=r Z+\sqrt{f} Y
\end{aligned}
$$

Parity symmetric theories - Integrability

In theories with Parity Symmetry in ϕ we have $G_{3}=G_{5}=F_{5}=0$
In this case the first equation may be integrated to

$$
Z^{2} f=\gamma^{2} h,
$$

while the remaining equations take the form

$$
r^{2}\left(Z G_{2}\right)_{X}+2\left(G_{4} Z\right)_{X}=0 \quad \text { and } \quad 2 \gamma^{2}(r h)^{\prime}+Z\left(G_{2} r^{2}+2 G_{4}\right)=0
$$

A general way to proceed in order to find explicit solutions is to consider an arbitrary function $\mathcal{G}=\mathcal{G}(X)$, such that

$$
\mathcal{G}_{X}=\frac{\alpha r^{2}+\beta}{\epsilon r^{2}+\delta}
$$

and the first equation are compatible.
Compatibility immediately gives the conditions

$$
G_{2} Z=\epsilon \mathcal{G}-\alpha X+C, \quad 2 G_{4} Z=\delta \mathcal{G}-\beta X+D
$$

Parity symmetric theories - Homogeneous solutions $(Z=\gamma)$

We set $Z=\gamma=-1$ which leads to $f=h$.
We also choose $\mathcal{G}=2 \mu X+\zeta$.
then we find

$$
\begin{aligned}
G_{2} & =-\epsilon \mu X^{2} \\
G_{4} & =-\frac{\delta \mu}{2} X^{2}-\frac{\delta \zeta-\beta}{2} X+1 \\
F_{4} & =-\frac{\beta-\delta \zeta}{8 X}+\frac{3 \delta \mu}{8}
\end{aligned}
$$

The solution is

$$
h(r)=1+\frac{(\beta-\delta \zeta)^{2}}{8 \delta \mu} \frac{\arctan \left(\sqrt{\frac{\epsilon}{\delta}} r\right)}{\sqrt{\frac{\epsilon}{\delta}} r}-\frac{2 M}{r}, \quad \text { and } \quad \phi^{\prime}(r)=-\frac{(\beta-\delta \zeta)}{\mu\left(\epsilon r^{2}+\delta\right)} \frac{1}{h(r)}
$$

Parity symmetric theories - Non-Homogeneous solutions ($Z=\gamma[1+X]$)
We use $Z(X)=\gamma(1+X)$, with $\gamma=-1$ and $\mathcal{G}=2 \mu X+\zeta$.
Then we find

$$
\begin{aligned}
& G_{2}=-\frac{\epsilon \mu X^{2}}{(1+X)} \\
& G_{4}=-\frac{\delta \mu X^{2}+(\delta \zeta-\beta) X-2}{2(1+X)} \\
& F_{4}=-\frac{\beta-\delta \zeta+X^{2}(2-\delta \mu)+X(-\beta+6+\delta(\zeta-3 \mu))}{8 X(X+1)^{2}}
\end{aligned}
$$

The solution is

$$
h(r)=1+\frac{(\beta-\delta \zeta)^{2}}{8 \delta \mu} \frac{\arctan \left(\sqrt{\frac{\epsilon}{\delta}} r\right)}{\sqrt{\frac{\epsilon}{\delta}} r}-\frac{2 M}{r}, \quad f(r)=\frac{h(r)}{(1+X)^{2}}
$$

with

$$
\phi^{\prime 2}(r)=-\frac{(\beta-\delta \zeta)}{\mu\left(\epsilon r^{2}+\delta\right)} \frac{1}{f(r)}, \quad \text { and } \quad X(r)=\frac{\beta-\delta \zeta}{2 \mu\left(\epsilon r^{2}+\delta\right)}
$$

Non parity preserving theories

The first two beyond Horndeski equations are

$$
\begin{aligned}
& X^{\prime} \mathcal{A}=2\left(\frac{h^{\prime}}{h}-\frac{f^{\prime}}{f}\right) \mathcal{B} \\
& \frac{h^{\prime} f}{2 h} \mathcal{A}=G_{2 X} r^{2}+2 G_{4 X}-2 r f \phi^{\prime} G_{3 X}-2 f Z_{X}
\end{aligned}
$$

For a homogeneous solution $(f=h)$ the first equation gives $\mathcal{A}=0$ or $X^{\prime}=0$.

For the case $\mathcal{A}=0$ right hand part in the second equation must be vanish independently or it may be proportional to \mathcal{A}

$$
G_{2 X} r^{2}+2 G_{4 X}-2 r f \phi^{\prime} G_{3 X}-2 f Z_{X}=-\sqrt{f} \mathcal{A} Q
$$

where

$$
\mathcal{A}=4 r Z_{X}+\phi^{\prime}\left(r^{2} G_{3 X}+G_{5 X}\right)+2 \sqrt{f} Y_{X}
$$

Non parity preserving theories

This leads to the following constraints

$$
\begin{gathered}
G_{2 X}=-\sqrt{-2 X} Q G_{3 X}=-2 Q^{2} Z_{X}, \quad 2 G_{4 X}=-\sqrt{-2 X} Q G_{5 X}, \quad Z_{X}=Q Y_{X} \\
Z=Q Y\left(1-\frac{G_{4}}{2 X G_{4 X}}\right) \quad Q_{X} Y=\left(Q Y \frac{G_{4}}{2 X G_{4 X}}\right)_{, X}
\end{gathered}
$$

In this case there are only two independent coupling functions: The coupling functions $G_{2}, G_{3}, G_{5}, F_{4}$ and F_{5} are given in terms of G_{4}, Q

The field equations have the form

$$
\begin{aligned}
& X^{\prime} \mathcal{A}=2\left(\frac{h^{\prime}}{h}-\frac{f^{\prime}}{f}\right) \mathcal{B} \\
& \mathcal{A}\left(\frac{h^{\prime} \sqrt{f}}{h}+2 Q\right)=0 \\
& 2 f \frac{h^{\prime}}{h} \mathcal{B}+G_{2} r^{2}+2 G_{4}+2 f Z=0
\end{aligned}
$$

Homogeneous black holes $(f=h)$ in non parity preserving theories

We use $G_{4}=1+\alpha(-2 X)^{n}$ and $Q=\sqrt{-2 X}$. For this case

$$
\begin{gathered}
Y=-G_{4 X} \sqrt{-2 X}, \quad Z=-\left(G_{4}-2 X G_{4 X}\right), \quad G_{2}=-2 \alpha n(2 n-1) \frac{(-2 X)^{n+1}}{n+1}, \\
G_{3}=2 \alpha(2 n-1)(-2 X)^{n}, \quad G_{5 X}=4 \alpha n(-2 X)^{n-2}
\end{gathered}
$$

From equation $\mathcal{A}=0$ we find

$$
\phi^{\prime}=\frac{1-\sqrt{(2 n-1) f}}{r \sqrt{(2 n-1) f}},
$$

while the last equation we get an algebraic equation

$$
(n+1)(2 n-1)^{n} r^{2 n-1}\left[(2 n-1)(2 M-r)+r F^{2}\right]+\alpha(1-F)^{2 n}\left(1+2 n F+F^{2}\right)=0
$$

where $F^{2}(r) \equiv(2 n-1) f>0$.

A special case $(\mathrm{n}=1)$

For the special case $n=1$ with the redefinition $\alpha \rightarrow 2 \alpha$ we may find an analytic solution of the algebraic equation ${ }^{2}$

$$
h(r)=f(r)=1+\frac{r^{2}}{2 \alpha}\left(1-\sqrt{1+\frac{8 \alpha M}{r^{3}}}\right), \quad \text { and } \quad \phi^{\prime}=\frac{\sqrt{h}-1}{r \sqrt{h}}
$$

The coupling functions are

$$
G_{2}=8 \alpha X^{2}, G_{3}=-8 \alpha X, G_{4}=1+4 \alpha X, G_{5}=-4 \alpha \ln |X|
$$

[^0]Black hole solutions in Modified Gravity

A general gravitation theory has the form

$$
S=\int d^{4} x \sqrt{-g}\left[R-\frac{1}{2} \nabla_{\mu} \Phi \nabla^{\mu} \Phi-V(\Phi)+\alpha \mathcal{L}_{i}\left(g_{\mu \nu}, \Phi\right)\right]
$$

If we break the assumptions of the no scalar hair theorem, the \mathcal{L}_{i} term usually contains non-minimal couplings

For example the EsGB theory accepts asymptotically flat black hole solutions for $V(\Phi)<0 .{ }^{3}$

$$
S=\int d^{4} x \sqrt{-g}\left[R-\frac{1}{2} \nabla_{\mu} \Phi \nabla^{\mu} \Phi-V(\Phi)+\alpha f(\Phi) R_{G B}^{2}\right]
$$

[^1]Black hole solutions in Modified Gravity

A general gravitation theory has the form

$$
S=\int d^{4} x \sqrt{-g}\left[R-\frac{1}{2} \nabla_{\mu} \Phi \nabla^{\mu} \Phi-V(\Phi)+\alpha \mathcal{L}_{i}\left(g_{\mu \nu}, \Phi\right)\right]
$$

If we break the assumptions of the no scalar hair theorem, the \mathcal{L}_{i} term usually contains non-minimal couplings

For example the EsGB theory accepts asymptotically flat black hole solutions for $V(\Phi)<0 .{ }^{3}$

$$
S=\int d^{4} x \sqrt{-g}\left[R-\frac{1}{2} \nabla_{\mu} \Phi \nabla^{\mu} \Phi-V(\Phi)\right]
$$

If we switch off the \mathcal{L}_{i} term $(\alpha \rightarrow 0)$, the background solution is not the Schwarzschild but instead depends on the potential $V(\Phi)$.

[^2]
The field equations

We assume a spherically symmetric form for the line-element:

$$
d s^{2}=-e^{A(r)} B(r) d t^{2}+\frac{d r^{2}}{B(r)}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right),
$$

The field equations are

$$
\begin{aligned}
& A^{\prime}(r)=\frac{r}{2}\left[\Phi^{\prime}(r)\right]^{2}, \\
& B^{\prime \prime}(r)+\frac{3}{2} A^{\prime}(r) B^{\prime}(r)+\left\{A^{\prime \prime}(r)+\frac{A^{\prime}(r)}{r}+\frac{\left[A^{\prime}(r)\right]^{2}}{2}-\frac{2}{r^{2}}\right\} B(r)=-\frac{2}{r^{2}}, \\
& V(\Phi)=\frac{2}{r^{2}}-\frac{2}{r} A^{\prime}(r) B(r)-\frac{2 B(r)}{r^{2}}+\frac{1}{2}\left[\Phi^{\prime}(r)\right]^{2} B(r)-\frac{2 B^{\prime}(r)}{r} .
\end{aligned}
$$

Black holes with a Coulombic scalar field

We assume a Coulombic form for the scalar field $\Phi(r)=\frac{q}{r}$ and we find the solution ${ }^{4}$:

$$
\begin{aligned}
A(r) & =-\frac{q^{2}}{4 r^{2}}, \quad B(r)=1-\frac{2 m(r)}{r} \\
m(r) & =\frac{r}{2}+\frac{4 r^{3}}{q^{2}}+\frac{e^{\frac{q^{2}}{8 r^{2}}} r^{2}}{q^{2}}\left[-12 M+\sqrt{2 \pi} q \operatorname{erf}\left(\frac{q}{2 \sqrt{2} r}\right)\right] \\
& -\frac{e^{\frac{q^{2}}{4 r^{2}} r^{3}}}{q^{3}}\left\{4 q-12 \sqrt{2 \pi} M \operatorname{erf}\left(\frac{q}{2 \sqrt{2} r}\right)+\pi q\left[\operatorname{erf}\left(\frac{q}{2 \sqrt{2} r}\right)\right]^{2}\right\} \\
V(\Phi) & =\frac{2\left(24+\Phi^{2}\right)}{q^{2}}-\frac{12 \Phi e^{\Phi^{2} / 8}}{q^{3}}\left[12 M-\sqrt{2 \pi} q \operatorname{erf}\left(\frac{\Phi}{2 \sqrt{2}}\right)\right] \\
& +\frac{\left(\Phi^{2}-12\right) e^{\Phi^{2} / 4}}{q^{3}}\left\{4 q-12 \sqrt{2 \pi} M \operatorname{erf}\left(\frac{\Phi}{2 \sqrt{2}}\right)+\pi q\left[\operatorname{erf}\left(\frac{\Phi}{2 \sqrt{2}}\right)\right]^{2}\right\}
\end{aligned}
$$

[^3]Black holes with Coulombic scalar field

For small values of the ratio q / r_{h}, the fraction $r_{h} /(2 M)$ is equal to unity and therefore $r_{h}=2 M$ as in the Schwarzschild geometry.

As the value of q / r_{h} increases, the value of $r_{h} /(2 M)$ decreases leading to ultra-compact black holes.

For more information see Theodoros Nakas' poster.

Wormholes in General Relativity

A wormhole is a solution of the Einstein's field equations which has the property to connect two distant regions in spacetime.

A wormhole may connect:

- Two distant regions of our universe (intra-universe wormholes) ${ }^{5}$.
- Two different universes (inter-universe wormhole).

The difference between the two kind of wormholes is topological. An observer who makes measurements near the wormhole cannot identify the class of the wormhole.

[^4]Traversable wormholes - Morris \& Thorne wormholes

- Morris and Thorne ${ }^{6}$ suggest that we may construct traversable wormholes using an "engineering-like" technique.
- We start with a metric which describes a traversable wormhole and by solving the Einstein field equation in the reverse direction we find the associate energymomentum tensor.

$$
d s^{2}=-e^{2 \phi(r)} d t^{2}+\left(1-\frac{b(r)}{r}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

- A traversable wormhole violates the Energy Conditions.

[^5]Traversable wormholes - Morris \& Thorne wormholes

- Morris and Thorne ${ }^{6}$ suggest that we may construct traversable wormholes using an "engineering-like" technique.
- We start with a metric which describes a traversable wormhole and by solving the Einstein field equation in the reverse direction we find the associate energymomentum tensor.

$$
d s^{2}=-e^{2 \phi(r)} d t^{2}+\left(1-\frac{b(r)}{r}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

- A traversable wormhole violates the Energy Conditions.

We need Exotic Matter in order to keep the throat open!

[^6]
Wormholes in Einstein Scalar Gauss-Bonnet Theory

$$
S=\int d^{4} x \sqrt{-g}\left[R-\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi+f(\phi) R_{G B}^{2}\right],
$$

- Wormhole solutions with real scalar field and no need for exotic matter ${ }^{7}$.
- They are traversable and may have a single or a double throat.
- Stability ${ }^{8}$?
- For phantom scalar field the system accepts the Ellis-Bronikov wormhole as a stealth solution ${ }^{9}$ (See Nikos Chatzifotis' poster).

[^7]
The disformal transformation

A disformal transformation D depending on X takes a solution of Horndeski theory to a solution of beyond Horndeski theory.

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}-D(\bar{X}) \partial_{\mu} \phi \partial_{\nu} \phi .
$$

For a spherically symmetric solution $\bar{\phi}=\phi, \bar{h}=h$ and

$$
f=\frac{\bar{f}}{W(\bar{X})}, \quad X=\frac{\bar{X}}{W(\bar{X})}, \quad W(\bar{X})=1+2 D \bar{X} .
$$

A homogeneous solution in Horndeski is transformed to a non-homogeneous in beyond Horndeski.

Wormhole solution

We start with a homogeneous black hole solution in Horndeski with horizon radius r_{h} i.e. $\left(h\left(r_{h}\right)=f\left(r_{h}\right)=0\right)$.

- If $W(\bar{X})^{-1}$ is everywhere finite we get a non-homogeneous black hole solution.
- If $W(\bar{X})^{-1}$ has a root $W(\bar{X})^{-1}=\left.0\right|_{r=r_{0}}$ with $r_{0}>r_{h}$ we get a wormhole $\left(f\left(r_{0}\right)=0\right.$ and $\left.h\left(r_{0}\right) \neq 0\right)$.

We will apply the disformal transformation to the Lu-Pang black hole solution. (See also N Chatzifotis, E. Papantonopoulos \& C. Vlachos arXiv:2111.08773)

$$
\begin{gathered}
\bar{h}(r)=\bar{f}(r)=1+\frac{r^{2}}{2 \alpha}\left(1-\sqrt{1+\frac{8 \alpha M}{r^{3}}}\right), \quad \text { and } \quad \bar{\phi}^{\prime}=\frac{\sqrt{\bar{h}}-1}{r \sqrt{\bar{h}}} \\
\bar{X}=-\frac{1}{2} \bar{h} \bar{\phi}^{\prime 2}=-\frac{1}{2} \frac{(\sqrt{\bar{h}}-1)^{2}}{r^{2}}
\end{gathered}
$$

Wormhole Solution

We use the transformation

$$
W(\bar{X})^{-1}=1-b_{1} \sqrt{-2 \bar{X}}=1-\frac{b_{1}}{r}(1-\sqrt{h})
$$

By setting $b_{1}=r_{0} / \lambda$ we find

$$
h(r)=\bar{h}(r), \quad f(r)=h(r)\left(1-\frac{r_{0}}{\lambda r}(1-\sqrt{h})\right), \quad \text { and } \quad \phi^{\prime}=\frac{\sqrt{h}-1}{r \sqrt{h}}
$$

The nature of the compact object is determined from the roots of the metric functions:

$$
f\left(r_{0}\right)=0 \Longrightarrow h\left(r_{0}\right)=(1-\lambda)^{2} \quad\left\{\begin{array}{l}
0<\lambda<1 \longrightarrow \text { Wormhole } \\
\lambda=1 \longrightarrow \text { Black hole }
\end{array}\right.
$$

where

$$
r_{0}=\frac{M+\sqrt{M^{2}-\alpha \lambda^{3}(2-\lambda)^{3}}}{\lambda(2-\lambda)}, \quad \text { and } \quad \alpha \leq \frac{M^{2}}{\lambda^{3}(2-\lambda)^{3}}
$$

At infinity we find:

$$
\begin{gathered}
h(r)=1-\frac{2 M}{r}+\frac{4 \alpha M^{2}}{r^{4}}+\mathcal{O}\left(r^{-5}\right), \quad f(r)=1+\frac{2 M}{r}+\frac{b_{1} M+4 M^{2}}{r^{2}}+\mathcal{O}\left(r^{-3}\right), \\
\phi^{\prime}(r)=-\frac{M}{r^{2}}+\mathcal{O}\left(r^{-3}\right) .
\end{gathered}
$$

The coordinate r covers only a half of the wormhole spacetime.
We may describe the solutions in both asymptotically flat regions using the coordinate transformation $r^{2}=l^{2}+r_{0}^{2}$ with $l \in(-\infty,+\infty)$.

$$
d s^{2}=-H(l) d t^{2}+\frac{1}{F(l)} d l^{2}+\left(l^{2}+r_{0}^{2}\right) d \Omega^{2}
$$

where

$$
H(l)=h(r(l)), \quad \text { and } \quad F(l)=\frac{f(r(l))\left(l^{2}+r_{0}^{2}\right)}{l^{2}}
$$

The new metric functions are continuous at the throat

$$
H(l)=h_{0}+h_{1} l^{2}+\mathcal{O}\left(l^{4}\right), \quad F(l)=f_{0}+f_{1} l^{2}+\mathcal{O}\left(l^{4}\right), \quad \phi(l)=\phi_{0}+\phi_{1} l+\mathcal{O}\left(l^{3}\right)
$$

For a spherical symmetric spacetime the null energy condition (NEC) has the form

$$
-T_{t}^{t}+T_{r}^{r} \geq 0, \quad \text { and } \quad-T_{t}^{t}+T_{\theta}^{\theta} \geq 0
$$

where $T_{\mu \nu}$ is the effective energy momentum tensor due to the scalar field defined from the equation $G_{\mu \nu}=T_{\mu \nu}$.

Conclusions

- In the case of Parity preserving theories the set of field equations is integrable and may lead to a variety of black-hole solutions.
- In the case of non-parity preserving theories, although intergrability seems to be lost, we developed a technique for a subclass of theories that allow us to solve the field equations.
- Regular analytic wormhole solutions were found for a class of the beyond Horndeski theories.

Thank You!

Transformation of the coupling functions

The coupling functions are transformed as

$$
\begin{aligned}
G_{2} & =\frac{\bar{G}_{2}}{(1+2 \bar{X} D)^{1 / 2}}, \quad G_{3 X}=\bar{G}_{3 \bar{X}} \frac{(1+2 \bar{X} D)^{5 / 2}}{1-2 \bar{X}^{2} D_{\bar{X}}} \\
G_{4} & =\frac{\bar{G}_{4}}{(1+2 \bar{X} D)^{1 / 2}}, \quad G_{5 X}=\frac{\bar{G}_{5 \bar{X}}(1+2 \bar{X} D)^{5 / 2}}{1-2 \bar{X}^{2} D_{\bar{X}}} \\
F_{4} & =\left(\bar{G}_{4}-2 \bar{X} \bar{G}_{4 \bar{X}}\right) \frac{D_{\bar{X}}(1+2 \bar{X} D)^{5 / 2}}{2\left(1-2 \bar{X}^{2} D_{\bar{X}}\right)}, \quad F_{5}=\bar{X} \bar{G}_{5 \bar{X}} \frac{D_{\bar{X}}(1+2 \bar{X} D)^{7 / 2}}{6\left(1-2 \bar{X}^{2} D_{\bar{X}}\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
& Z=(1+2 \bar{X} D)^{1 / 2} \bar{Z}, \quad Y=(1+2 \bar{X} D)^{1 / 2} \bar{Y}, \quad \mathcal{B}=(1+2 \bar{X} D)^{1 / 2} \overline{\mathcal{B}}, \\
& \mathcal{A}=\frac{(1+2 \bar{X} D)^{5 / 2}}{1-2 \bar{X}^{2} D_{\bar{X}}} \overline{\mathcal{A}}+4 \frac{(1+2 \bar{X} D)^{3 / 2}}{1-2 \bar{X}^{2} D_{\bar{X}}}\left(D+\bar{X} D_{\bar{X}}\right) \overline{\mathcal{B}} .
\end{aligned}
$$

The wormhole Theory

$$
\begin{aligned}
& G_{2}=\frac{42^{3 / 4} \alpha y^{4}}{\sqrt{\frac{1}{\sqrt{2}-2 b_{1} y}}}, \quad G_{3 X}=\frac{16 \sqrt[4]{2} \alpha \sqrt{\frac{1}{\sqrt{2}-2 b_{1} y}}}{3 \sqrt{2} b_{1} y-2}, \\
& G_{4}=\frac{1-4 \alpha y^{2}}{\sqrt[4]{2} \sqrt{\frac{1}{\sqrt{2}-2 b_{1} y}}}, \quad G_{5 X}=-\frac{8 \sqrt[4]{2} \alpha \sqrt{\frac{1}{\sqrt{2}-2 b_{1} y}}}{y^{2}\left(3 \sqrt{2} b_{1} y-2\right)}, \\
& F_{4}=\frac{b_{1}\left(\sqrt{2}-4 b_{1} y\right)\left(\frac{1}{\sqrt{2}-2 b_{1} y}\right)^{5 / 2}\left(4 \alpha y^{2}+1\right)}{2^{3 / 4} y^{3}\left(3 \sqrt{2} b_{1} y-2\right)}, \\
& F_{5}=\frac{22^{3 / 4} \alpha b_{1}\left(\sqrt{2}-4 b_{1} y\right)\left(\frac{1}{\sqrt{2}-2 b_{1} y}\right)^{7 / 2}}{3 y^{3}\left(2-3 \sqrt{2} b_{1} y\right)},
\end{aligned}
$$

where,

$$
X=y^{2}\left(-1+\sqrt{2} b_{1} y\right) .
$$

[^0]: ${ }^{2}$ H. Lu and Y. Pang, Phys. Lett. B 809 (2020), 135717. [arXiv:2003.11552 [gr-qc]].

[^1]: ${ }^{3}$ A. B, P. Kanti and N. Pappas, Phys. Rev. D 101 (2020) no.8, 084059 (arXiv:2003.02473).

[^2]: ${ }^{3}$ A. B, P. Kanti and N. Pappas, Phys. Rev. D 101 (2020) no.8, 084059 (arXiv:2003.02473).

[^3]: ${ }^{4}$ A. B. and T. Nakas, JHEP 04 (2022), 096 (arXiv:2107.05656).

[^4]: ${ }^{5}$ The figure of the intra-universe wormhole is from the following book: C. W. Misner, K. S. Thorne and J. A. Wheeler, "Gravitation", San Francisco, 1973

[^5]: ${ }^{6}$ M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).
 M. Visser, "Lorentzian wormholes: From Einstein to Hawking", Woodbury, USA: AIP (1995)

[^6]: ${ }^{6}$ M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).
 M. Visser, "Lorentzian wormholes: From Einstein to Hawking", Woodbury, USA: AIP (1995)

[^7]: ${ }^{7}$ P. Kanti, B. Kleihaus, and J. Kunz, Phys. Rev. Lett. 107 (2011) 271101.
 G. Antoniou, A. B., P. Kanti, B. Kleihaus, and J. Kunz, Phys. Rev. D 101, (2020) 024033.
 ${ }^{8}$ M. A. Cuyubamba, R. A. Konoplya and A. Zhidenko, Phys. Rev. D 98 (2018) no.4, 044040.
 V. A. Rubakov, Theor. Math. Phys. 188 (2016) no.2, 1253-1258.
 O. A. Evseev and O. I. Melichev, Phys. Rev. D 97 (2018) no.12, 124040.
 S. Mironov, V. Rubakov and V. Volkova, Class. Quant. Grav. 36 (2019) no.13, 135008.
 G. Franciolini, L. Hui, R. Penco, L. Santoni and E. Trincherini, JHEP 01 (2019), 221.
 ${ }^{9}$ A.B, N. Chatzifotis, C. Erices, and E. Papantonopoulos arXiv:2306.16768

