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Black Holes in General Relativity and the No-Hair Theorem

o Black holes in General Relativity may be described only by three physical
quantities: Mass, E/M charge and Angular Momentum.

o Black holes are very special objects: Two stars with the same mass are, in
general, very different, but two black holes with the same characteristics (M, Q
and J) will be identical.

o No hair theorems: Uniqueness theorems which state that in General Relativity
only four possible solutions for black holes may exist.

arXiv:2303.09116 November 9, 2023 3/27




No-Scalar Hair Theorem

Adding new matter/energy forms in the theory could lead to new black holes
solutions?

The simplest form is a Scalar field coupled to the gravitational field:

S = /d4x\/jg [R - %VMDV“(I) -V (<1>)] :

Assumptions:

o Asymptotically flatness,
o The scalar field has the same symmetries with the spacetime,
o V(@) > 0.

o Minimal coupling.

Under these assumptions black holes with scalar hair do not exist *.

1J. D. Bekenstein, Phys. Rev. Lett. 28 (1972) 452
J. D. Bekenstein, Phys. Rev. D 51 (1995) no.12 R6608
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Beyond Horndeski theory

S = /d‘*m/—g (L2+ Lo+ La+ L5+ L3 + £27),

with
X = —50,60",
Lo = G2(e, X), L3 =—Gs(¢, X) O,
Ly =Ga(¢, X)R+ Gax [(06)” = V0,6 V*0"¢]
Ls = Gs5(¢, X)G ., VH0" ¢ — é Gsx [(0¢)® =309 V,0,6 V"9 ¢
+2V,0, V"9 V,0" 9],
LY = Fy(p, X)e" P P L 0,000V, 050 V 0,
L2 = Fy(¢, X)e"P7 €77 9,0 0acp V003 V 0 ) V5050,
and

XGsxFy = 3F5(G4 — 2XG4x).
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Black hole solutions in Horndeski anc

The Field Equations for the Shift-Symmetric theory

We focus on the shift symmetric case, therefore G; = G;(X) and F; = F;(X).

For a spherically symmetric line-element

ds® = —h(r)dt* +

dr?
f(r)

+7r2d0?,

The field equations of the beyond Horndeski theory are

Ao _
cana(t
'f

2h

Qf%B — G

with

Z(X)=2XGux — G4+ 4X°Fy,

£
f)B’

A= G2x7"2 + 2G4x — 2Tf¢lG3X - 2fZX s

—-2Gs—2fZ.

Y(X) = 2(-2X)"2Csx +3(-2X)* R,

A=4rZx + ¢ (*Gax + Gsx) +2/fYx, and B=rZ+.\/fY.
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e solutions in Horndeski anc

Parity symmetric theories - Integrability

In theories with Parity Symmetry in ¢ we have Gs = G5 = F5 =0
In this case the first equation may be integrated to
Z°f=+"h,
while the remaining equations take the form
r2(ZG2)x 4+ 2(GaZ)x =0 and 2v%(rh)’ + Z(Gar® +2G4) = 0.

A general way to proceed in order to find explicit solutions is to consider an arbitrary
function G = G(X), such that

ar?+ 8

Gx = er2 + 0

and the first equation are compatible.

Compatibility immediately gives the conditions

G2Z =eG—aX +C, 2G.Z2=06G—BX+D,
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Black hole solutions in Horndeski anc

Parity symmetric theories - Homogeneous solutions (Z = )

We set Z = v = —1 which leads to f = h.
We also choose G = 2uX + C.

then we find
Gy = —epX?,
G4:—5—“X2—ux+1,
2 2

The solution is

(B —680) arctan(\/gr) _2M and () = — (B-60) 1

85 \/gr r’ pu(er?2 4+96) h(r)

h(r)=1+
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Parity symmetric theories - Non-Homogeneous solutions (Z = ~[1 + X])

We use Z(X) =~(1+ X), with vy = —1 and G = 2uX + (.
Then we find

. enX?
“="hrx)
G, X7+ (0 B)X 2
T 21 + X) ’
F4:75—5§+X2(2—6u)+X(—6+6+5(C—3M)).

8X (X +1)2

The solution is

B (B —6¢)? arctan(\/gr) oM k()
h(’l")—l—‘r 8(5” \/gr _77 f(r)7(1+X)27
with
oy (B=60) 1 __B=96¢
R R N T
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e solutions in Horndeski anc

Non parity preserving theories
The first two beyond Horndeski equations are
’ !
X’A—Q(hf) B,

h f
hlf _ 2 U
Qh.A—szT +2G4X*27"f¢ G3X72fZX.

For a homogeneous solution (f = h) the first equation gives A =0 or X' = 0.

For the case A = 0 right hand part in the second equation must be vanish
independently or it may be proportional to A

Gaxm? 4+ 2Gux — 2rf¢' Gsx — 2f Zx = —\/}AQ,

where

A=4rZx + ¢,(T2G3X + Gsx) + 2\/J7YX:

arXiv:2303.09116 November 9, 2023
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e solutions in Horndeski anc

Non parity preserving theories

This leads to the following constraints
G2X = —V —2XQG3X = —2QQZX, 2C;'ZLX = =V _2XQG5X7 ZX = QYX ’
G4 G4
Z=QY (1 - ——— Y =(QY ———— .
@ ( 2XGax ) @x (Q 2XGux ) X

In this case there are only two independent coupling functions: The coupling
functions G2, Gs3, G5, Fy and F5 are given in terms of G4, Q

The field equations have the form

PN & O
A(h'}‘l/fmcg) —o0,

2f%B+G2r2+2G4+2fZ:O,

Athana > arXiv:2303.09116 November 9, 2023 11 /27



e solutions in Horndeski anc

Homogeneous black holes (f = h) in non parity preserving theories

We use G4 =1+ a(—2X)" and Q = v/—2X. For this case

(=2x)"*

Y:—G’4)(\/—2)(7 Z:—(G4—2XG4)(), GQ:—Zom(Qn—l) n+1 ,

G3 =2a(2n — 1) (—2X)", Gsx = 4an (—2X)"7% .

From equation A = 0 we find

1—+y/@Cn—1)f

o= ry/(2n—1)f

while the last equation we get an algebraic equation

(n+1)@2n—1)"r*" " [2n - 1)(2M — 1) +rF?] + a (1 - F)*" (1 +2nF 4+ F?) =0,

where F2(r) = (2n —1)f > 0.

Athana > arXiv:2303.09116 November 9, 2023 12 /27



Black hole solutions in Horndeski and beyond Hornde

A special case (n=1)

For the special case n = 1 with the redefinition @ — 2a we may find an analytic
solution of the algebraic equation®

r? 8aM , —
h(r)zf(r)zl—l—g 1—4/1+ 3 , and ¢ = ——rn—

The coupling functions are

Go =8aX?, G3 = —8aX, Gy =1+ 4aX, Gs = —4aln|X|.

2H. Lu and Y. Pang, Phys. Lett. B 809 (2020), 135717. [arXiv:2003.11552 [gr-qc]].
>poulos arXiv:2303.09116 November 9, 2023 13 /27




utions in Horndeski anc

Black hole solutions in Modified Gravity

A general gravitation theory has the form

S = /d4x\/—g [R - %vu@ VED — V(®) + oL (guv, @)} :

If we break the assumptions of the no scalar hair theorem, the £; term usually
contains non-minimal couplings

For example the EsGB theory accepts asymptotically flat black hole solutions for
V(®)<o0. ?

S = /d%«/—g [R — %vué VED — V(D) 4 af(®)R%65| ,

3A. B, P. Kanti and N. Pappas, Phys. Rev. D 101 (2020) no.8, 084059 (arXiv:2003.02473).
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blutions in Horndeski anc

Black hole solutions in Modified Gravity

A general gravitation theory has the form

&= /d4x\/—g [R = %v,@ VED — V(D) + L (guv, @)} ,

If we break the assumptions of the no scalar hair theorem, the £; term usually
contains non-minimal couplings

For example the EsGB theory accepts asymptotically flat black hole solutions for
V(®) <0.?

5= /d4x\/jg [R - %vucb VED — V((I))] :

If we switch off the £; term (o — 0), the background solution is not the
Schwarzschild but instead depends on the potential V(®).

3A. B, P. Kanti and N. Pappas, Phys. Rev. D 101 (2020) no.8, 084059 (arXiv:2003.02473).
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Black hole solutions in Horndeski anc

The field equations

We assume a spherically symmetric form for the line-element:

dr?

ds® = =" B(r)dt* + 5 ol r? (d6® + sin® 0 d?)
The field equations are
A(r) =3 [@'@)]°
B"(r) + gA'(r)B'(r) + {A”(r) + AIT(T) + [Al(;)]? fz } B(r) = % )
v@)= 2 - 2amse) - 220 4 L e )] B - 220
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e solutions in Horndeski anc

Black holes with a Coulombic scalar field

We assume a Coulombic form for the scalar field ®(r) = g and we find the solution”:

A(r) = 7 B(r)y=1- 2m(r)

m(r) =

2
Ap3 2
_%+q%+es " |:—12M+\/27qurf(q):|

q> 22

2

e’ q q
— 4q — 12V 27 M erf + mq | erf ,
¢ {q <m> q[ (m)]}

2 »2/8
V(@)= 22 12<1>qi [12M— @rqerf<‘1’”

q> 22

(D2 — 12)e*”/4 i) o\’
+ qs{llq —12V21 M erf (M) + 7q [erf <2\/§> ] } .

4A. B. and T. Nakas, JHEP 04 (2022), 096 (arXiv:2107.05656).
arXiv:2303.09116 November 9, 2023
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in Hornde

ution

Black holes with Coulombic scalar field
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For small values of the ratio q/r,, the fraction r,/(2M) is equal to unity and
therefore r;, = 2M as in the Schwarzschild geometry.
As the value of ¢/ry increases, the value of r,/(2M) decreases leading to
ultra-compact black holes.
For more information see Theodoros Nakas’ poster.
17 /27
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Wormbholes in General Relativity

A wormbhole is a solution of the Einstein’s field equations which has the property to
connect two distant regions in spacetime.

A wormhole may connect:
. . . . . 5
o Two distant regions of our universe (intra-universe wormholes)”.
e Two different universes (inter-universe wormhole).

The difference between the two kind of wormholes is topological. An observer who
makes measurements near the wormhole cannot identify the class of the wormhole.

5The figure of the intra-universe wormhole is from the following book:
C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation”, San Francisco, 1973
arXiv:2303.09116 November 9, 2023 18 /27




Wormholes in General Relativity

Traversable wormholes - Morris & Thorne wormholes

e Morris and Thorne® suggest that we may construct traversable wormholes using
an “engineering-like” technique.

o We start with a metric which describes a traversable wormhole and by solving
the Einstein field equation in the reverse direction we find the associate energy-
momentum tensor.

-1
ds® = —**Mar® + (1 - b(:)) dr? + r2dQ°.

o A traversable wormhole violates the Energy Conditions.

SM. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).
M. Visser, “Lorentzian wormholes: From Einstein to Hawking”, Woodbury, USA: AIP (1995)
arXiv:2303.09116 November 9, 2023 19 /27



Wormholes in General Relativity

Traversable wormholes - Morris & Thorne wormholes

e Morris and Thorne® suggest that we may construct traversable wormholes using
an “engineering-like” technique.

o We start with a metric which describes a traversable wormhole and by solving
the Einstein field equation in the reverse direction we find the associate energy-
momentum tensor.

b(r)\ ™
ds® = —**Mar® + (1 -2 ) dr? +r2dQ°.
r
o A traversable wormhole violates the Energy Conditions.

We need Exotic Matter in order to keep the throat open!

SM. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).
M. Visser, “Lorentzian wormholes: From Einstein to Hawking”, Woodbury, USA: AIP (1995)
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Wormbholes in Einstein Scalar Gauss-Bonnet Theory

S = / d'ay/=g R - Va6V + ()R],

Wormbhole solutions with real scalar field and no need for exotic matter’.

They are traversable and may have a single or a double throat.

Stability®?

o For phantom scalar field the system accepts the Ellis-Bronikov wormhole as a
stealth solution” (See Nikos Chatzifotis’ poster).

7P. Kanti, B. Kleihaus, and J. Kunz, Phys. Rev. Lett. 107 (2011) 271101.

G. Antoniou, A. B., P. Kanti, B. Kleihaus, and J. Kunz, Phys. Rev. D 101, (2020) 024033.
8M. A. Cuyubamba, R. A. Konoplya and A. Zhidenko, Phys. Rev. D 98 (2018) no.4, 044040.
V. A. Rubakov, Theor. Math. Phys. 188 (2016) no.2, 1253-1258.

O. A. Evseev and O. I. Melichev, Phys. Rev. D 97 (2018) no.12, 124040.

S. Mironov, V. Rubakov and V. Volkova, Class. Quant. Grav. 36 (2019) no.13, 135008.

G. Franciolini, L. Hui, R. Penco, L. Santoni and E. Trincherini, JHEP 01 (2019), 221.
9A.B, N. Chatzifotis, C. Erices, and E. Papantonopoulos arXiv:2306.16768
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The disformal transformation

A disformal transformation D depending on X takes a solution of Horndeski theory

to a solution of beyond Horndeski theory.

Juv = Guv — D(X) Oug0u¢.

For a spherically symmetric solution ¢ = ¢, h = h and

_F X o _
f= X X——W()_(), W(X)=1+2DX.

A homogeneous solution in Horndeski is transformed to a non-homogeneous in
beyond Horndeski.

arXiv:2303.09116 November 9, 2023
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1 beyond Horndeski theor;

Wormbhole solution

We start with a homogeneous black hole solution in Horndeski with horizon radius rp,

ie.(h(rn) = f(rn) =0).

o If W(X' )71 is everywhere finite we get a non-homogeneous black hole solution.
o If W(X)™* has a root W(X)™* = 0|,=, with ro > 7, we get a wormhole
(f(ro) = 0 and h(ro) # 0).

We will apply the disformal transformation to the Lu-Pang black hole solution.
(See also N Chatzifotis, E. Papantonopoulos & C. Vlachos arXiv:2111.08773)

7 7 r? 8aM - Vh—1
h(r)—f(r)—1+a<1 L+ =3 ) and ¢’ = v

Athana > arXiv:2303.09116 November 9, 2023 22 /27



1 beyond Horndeski theor;

‘Wormbhole Solution

‘We use the transformation
W(X)—l:1—b1\/—2)’(=1—b71(1—x/ﬁ).
By setting b1 = ro/\ we find

hr) = k(). ) =h() (1= 32 (1-VR)),  and ¢':%—E1.

The nature of the compact object is determined from the roots of the metric
functions:

0 < A <1 — Wormhole
flro)=0= h(ro) = (1 - )\)2 <

A =1 — Black hole

where

M + /M2 —aX3 (2 - )3 M?
To =

< — .
22—\ »oandaS HETR

Athana > arXiv:2303.09116 November 9, 2023 23 /27



_ 2M b M +4M?
1O (), jry=1+ 20 2D

P o).

¢ (r) = _TMQ +0 (r_3) .

The coordinate r covers only a half of the wormhole spacetime.

We may describe the solutions in both asymptotically flat regions using the
coordinate transformation r? = 1% + r¢ with | € (—o0, +00).

2 _ 2 L 2 2 2 2
ds®> = —H(l)dt +F(l)dl + (12 +r3)dQ?,

where

H()=h(r(), and F()= w.

The new metric functions are continuous at the throat

H(l) = ho + > + 00",  F()=fo+ LI®+01Y,  ¢(1) = ¢o + ¢1l + O(1).

Athana > arXiv:2303.09116 November 9, 2023 24 /27
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For a spherical symmetric spacetime the
null energy condition (NEC) has the form

T/ +T7 >0, and —T}+T; >0,

where T}, is the effective energy momen-
tum tensor due to the scalar field defined
from the equation G, = T

arXiv:2303.09116 November 9, 2023 25 /27
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Wormhole solutions in beyond Horndeski theorjy

Conclusions

o In the case of Parity preserving theories the set of field equations is integrable
and may lead to a variety of black-hole solutions.

o In the case of non-parity preserving theories, although intergrability seems to be
lost, we developed a technique for a subclass of theories that allow us to solve
the field equations.

o Regular analytic wormhole solutions were found for a class of the beyond
Horndeski theories.

>poulos arXiv:2303.09116 November 9, 2023 26 /27



Thank You!
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Transformation of the coupling functions

The coupling functions are transformed as

B _ (1+2XD)%?
Goe— G2 g UERDT
(1+2XD)'/2 1-2X2Dy
64 GS)’((1+2XD)5/2
Gi=—"5F——, Gsx = = )
(1+2XD)'/2 1-2X2Dg
- _ . Dg(1+2XD)? -~ Dx(1+2XD)"/?
Fi = (Gs — 2XGyg) ZXUL2XD) )= Xy XU 22D

2(1 —2X2Dg) 6(1 —2X2Dg)

and

Z=@+2XD)"*Z, Y =(+2XD)"*Y, B=(+2XD)'/’5,

1+2XD)%/? 142X D)%/? - _
A= uA-{—‘lu(D—FXD)})B.
1-2X2Dy 1-2X2Dy
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The wormhole Theory

Gy — 4 23/4ay4 Gax = 1620 V v2 2b1y

1 ’ 3\fb1y —2 ’
V2—-2b1y
1 — 4oy? 820 V v2 2b1y
G4 = ﬁ’ G5X = m
V2 V2-2b1y Y t
5/2 2
(2 ) () (tan? + )
o 28/43 (3v/2b1y — 2) ’
3/4 1 7/2
. 2 2%/%aby (V2 — 4bry) (VMM)
5=

y3 (2 — 3\/§b1y) ’

where,

X =y (=14 V2biy).

Athana b>ulos arXiv:2303.09116 November 9, 2023
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