Gravitino Dark Matter

Vassilis C. Spanos

National and Kapodistrian
University of Athens

AstroParticle Symposium 2023
Institut Pascal 27/10/2023

Outline

- DM scenarios in SUSY models and CMSSM
- Gravitino DM models, calculation of gravitino thermal density
- Discussion on SUGRA models that can produce PBH
- Summary

Neutralino (X) as DM

The most well studied SUSY DM candidate particle, both theoretically and experimentally

- Motivated by the so-called WIMP miracle, it has been studied in various SUSY models: CMSSM/mSUGRA, NUHM, pMSSM etc
$\Omega h^{\mathbf{2}} \sim 0.12$ is achieved in particular regions of the parameter space: coannihilation regions (stop, stau, gauginos), focus point region, Afunnel region

Possible tension in these regions between direct and indirect DM constraints

Recent study

* Revisit the X DM regions in CMSSM, locate the strips
* Use indirect constraints from neutrino fluxes from Sun (IceCube data) and gammas from dSph (Fermi-LAT data)

Soft parameters for Constrained Minimal SUSY SM (CMSSM)

(1) m_{0}

Common mass for sfermion: sleptons, squarks
(2) $m_{1 / 2}$

Common mass for gauginos, M_{1}, M_{2}, M_{3}
(3) $\tan \beta$

The ratio of the vev's of two Higgs fields, $\tan \boldsymbol{\beta}=\left\langle\boldsymbol{H}_{2}^{0}\right\rangle /\left\langle\boldsymbol{H}_{1}^{0}\right\rangle$
(4) A_{0}

Trilinear parameter, affects the sfermion masses and couplings
© $\operatorname{sign}(\mu)$
sign of Higgs mixing parameter μ

Supersymmetric particles

SM

fermions (spin 1/2)
u, d, c, s, t, b
sfermions (spin 0)

$$
\begin{aligned}
& \tilde{\boldsymbol{u}}, \tilde{\boldsymbol{d}}, \tilde{\boldsymbol{c}}, \tilde{\boldsymbol{s}}, \tilde{\boldsymbol{t}}, \tilde{\boldsymbol{b}} \\
& \tilde{\boldsymbol{N} S P}, \tilde{\boldsymbol{\mu}}, \tilde{\tau}, \tilde{\nu}_{e}, \tilde{\nu}_{\mu}, \tilde{\nu}_{\tau}
\end{aligned}
$$

$e, \mu, \tau, \nu_{e}, \nu_{\mu}, \nu_{\tau}$
gauge bosons (spin 1)
$\gamma, Z, W^{ \pm}, g$
Higgs boson (spin 0) h
gauginos (spin 1/2)

$$
\tilde{\gamma}, \tilde{Z}, \tilde{W}^{ \pm}, \tilde{g}
$$

$$
H, A, H^{ \pm}
$$

SUSY and Higgs mass

$$
\begin{aligned}
& m_{h}=\sqrt{\frac{1}{2}\left[M_{A}^{2}+M_{Z}^{2}-\sqrt{\left(M_{A}^{2}+M_{Z}^{2}\right)^{2}-4 M_{A}^{2} M_{Z}^{2} \cos ^{2} \beta}\right]}<M_{Z} \\
& \quad \tan \beta=\frac{v_{2}}{v_{1}}
\end{aligned}
$$

$$
\Delta m_{h}^{2} \simeq \frac{3}{4 \pi^{2}} \frac{m_{t}^{4}}{v^{2}}\left[\log \left(\frac{m_{\tilde{t}}^{2}}{m_{t}^{2}}\right)+\frac{X_{t}^{2}}{m_{\tilde{t}}^{2}}-\frac{X_{t}^{4}}{12 m_{\tilde{t}}^{4}}\right]
$$

$$
-\frac{3}{48 \pi^{2}} \frac{m_{b}^{4}}{v^{2}} \frac{t_{\beta}^{4}}{\left(1+\epsilon_{b} t_{\beta}\right)^{4}} \frac{\mu^{4}}{m_{\tilde{b}}^{4}}
$$

$$
-\frac{1}{48 \pi^{2}} \frac{m_{\tau}^{4}}{v^{2}} \frac{t_{\beta}^{4}}{\left(1+\epsilon_{\ell} t_{\beta}\right)^{4}} \frac{\mu^{4}}{m_{\tilde{\tau}}^{4}} \quad X_{t}=A_{t}+\mu / \tan \beta \approx A_{t}
$$

- Higgs Mass = $\mathbf{1} 25$ GeV => Heavy Spectrum

- [Ellis, Olive,VCS, Stamou (2023)]

$\tan \beta=40, \mathrm{~A}_{0}=0, \mu>0$

$\tan \beta=20, \mathrm{~A}_{0}=0, \mu>0$

$\tan \beta=50, \mathrm{~A}_{0}=0, \mu>0$

- [Ellis, Olive,VCS, Stamou (2023)]

Recap for neutralinos

* Neutralino DM is *well* studied in CMSSM
* The combination of Higgs mass bound and direct DM searches can be fulfilled in large parts of the parameter space, BUT well beyond the LHC reach
* The indirect searches gamma and neutrino fluxes do not constraint the parameter space

Gravitino as DM

- Gravitino is the $s=3 / 2$ superpartner of graviton. Naturally is in the spectrum of any SUGRA model [Ellis, Hagelin, Nanopoulos, Olive, Srednicki (1983), Khlopov, Linde (1984)]
* The "classic" freeze-in DM candidate particle
- Naturally escapes all the direct and indirect DM searches
- Can be produced non-thermally: (i) inflaton decays [Giudice, Riotto,Tkachev (1999); Kallosh, Kofman, Linde, Van Proeyen (2000); Nilles, Peloso, Sorbo (200I), Endo, Kawasaki, Takahashi, Yanagida (2006)] (ii) decays from unstable particles, eg NLSP decays in GDM models [Cyburt, Ellis, Field, Olive,VSC (2006); Kawasaki, Kohri, Moroi, Yotsuyanagi (2008)]
- In the later case the BBN constraints should be applied [Cyburt, Ellis, Field, Luo, Olive,VSC (2012)]
- In any case the thermal gravitino production rate is vital to apply cosmological constraints

Background of the calculation

Effective theory of light gravitinos, only I/2 goldstino components [Ellis, Kim, Nanopoulos (1984); Moroi, Murayama, Yamagushi, Kawasaki (1993,1994)]

Use of the Braaten, Pisarksi, Yan method including 3/2 components [Ellis, Nanopoulos, Olive, Rey (I996), Bolz, Buchmuller, Plumacher, Brandenburger (1998,200I); Pedlar, Steffen (2007)]

* I-loop calculation beyond the HTL approximation [Rychkov, Strumia (2007)]
* Our calculation: error corrections and proper parametrization of the result [Eberl, Gialamas,VCS (202I)]
- More improvements in the calculation will come [Eberl, Gialamas,VCS (2022) to appear]

The setup of the calculation

The Braaten-Yuan prescription

$$
\gamma=\left.\gamma\right|_{\text {hard }} ^{k^{*}<k}+\left.\gamma\right|_{\text {soft }} ^{k^{*}>k}
$$

where $\quad g T \ll k^{*} \ll T \quad$ assuming $\quad g \ll 1$

Hard part is calculated from squared matrix elements

$$
|\mathcal{M}(a b \rightarrow c \widetilde{G})|^{2}
$$

Soft part is calculated from Imaginary part of the gravitino self-energy

$$
\gamma \gamma_{\text {hard }}^{k^{*}<k}=A_{\text {hard }}+B \ln \left(\frac{T}{k^{*}}\right) \quad \text { and } \quad \gamma \gamma_{\text {soft }}^{k^{*}>k}=A_{\text {soft }}+B^{\prime} \ln \left(\frac{k^{*}}{m_{\text {thermal }}}\right)
$$

Thus

$$
\begin{aligned}
& \gamma_{\mathrm{BY}}=\frac{3 \zeta(3)}{16 \pi^{3}} \frac{T^{6}}{M_{\mathrm{P}}^{2}} \sum_{N=1}^{3} c_{N}^{\prime} g_{N}^{2}\left(1+\frac{m_{\lambda_{N}}^{2}}{3 m_{3 / 2}^{2}}\right) \ln \left(\frac{k_{N}^{\prime}}{g_{N}}\right) \\
& c_{N}^{\prime}=(11,27,72) \quad, k_{N}^{\prime}=(1.266,1.312,1.271) \quad \text { [Pradler, Steffen (2007)] }
\end{aligned}
$$

Analytical result, but valid only for $g \ll 1$
where $\left.\gamma\right|_{\text {soft }}$ is calculated in the Hard Thermal Loop (HTL) approx

The condition $g(T) \ll 1$ is not satisfied in the whole temperature range especially if $g=g_{3}$

Beyond the HTL approx

(Calculate the full I-loop gravitino self-energy beyond HTL approximation

Calculate the so-called subtracted part of the $|\mathcal{M}|^{2}$ [Rychkov, Strumia (2007)]

The subtracted part of the squared amplitude is this that cannot be part of the gravitino self-energy

For example if $X: g g \rightarrow \tilde{g} \widetilde{G}$

where thick lines denote resumed thermal propagators

$$
\text { Thus } \quad \gamma_{3 / 2}=\gamma_{\text {sub }}+\gamma_{\mathrm{D}}+\gamma_{\text {top }}
$$

X	process	$\left\|\mathcal{M}_{X, \text { full }}\right\|^{2}$	$\left\|\mathcal{M}_{X, \text { sub }}\right\|^{2}$
A	$g g \rightarrow \tilde{g} \widetilde{G}$	$4 C_{3}\left(s+2 t+2 t^{2} / s\right)$	$-2 s C_{3}$
B	$g \tilde{g} \rightarrow g \widetilde{G}$	$-4 C_{3}\left(t+2 s+2 s^{2} / t\right)$	$2 t C_{3}$
C	$\tilde{q} g \rightarrow q \widetilde{G}$	$2 s C_{3}^{\prime}$	0
D	$g q \rightarrow \tilde{q} \widetilde{G}$	$-2 t C_{3}^{\prime}$	0
E	$\tilde{q} q \rightarrow g \widetilde{G}$	$-2 t C_{3}^{\prime}$	0
F	$\tilde{g} \tilde{g} \rightarrow \tilde{g} \widetilde{G}$	$8 C_{3}\left(s^{2}+t^{2}+u^{2}\right)^{2} /(s t u)$	0
G	$q \tilde{g} \rightarrow q \widetilde{G}$	$-4 C_{3}^{\prime}\left(s+s^{2} / t\right)$	0
H	$\tilde{q} \tilde{g} \rightarrow \tilde{q} \widetilde{G}$	$-2 C_{3}^{\prime}\left(t+2 s+2 s^{2} / t\right)$	0
I	$q \tilde{q} \rightarrow \tilde{g} \widetilde{G}$	$-4 C_{3}^{\prime}\left(t+t^{2} / s\right)$	0
J	$\tilde{q} \tilde{q} \rightarrow \tilde{g} \widetilde{G}$	$2 C_{3}^{\prime}\left(s+2 t+2 t^{2} / s\right)$	0

Squared matrix elements for gravitino production in $S U(3)_{c}$ in terms of $g_{3}^{2} Y_{3} / M_{\mathrm{P}}^{2}$
$Y_{3}=1+m_{\tilde{g}}^{2} /\left(3 m_{3 / 2}^{2}\right), C_{3}=24$ and $C_{3}^{\prime}=\overline{4} 8$

$$
\begin{aligned}
& \left|\mathcal{M}_{X, \text { full }}\right|^{2}=\left|\mathcal{M}_{X, s}+\mathcal{M}_{X, t}+\mathcal{M}_{X, u}+\mathcal{M}_{X, x}\right|^{2} \\
& \left|\mathcal{M}_{X, D}\right|^{2}=\left|\mathcal{M}_{X, s}\right|^{2}+\left|\mathcal{M}_{X, t}\right|^{2}+\left|\mathcal{M}_{X, u}\right|^{2}
\end{aligned}
$$

$$
\left|\mathcal{M}_{X, \text { sub }}\right|^{2}=\left|\mathcal{M}_{X, \text { full }}\right|^{2}-\left|\mathcal{M}_{X, D}\right|^{2}
$$

$\gamma_{\text {sub }}$

$$
\gamma=\frac{1}{(2 \pi)^{8}} \int \frac{\mathrm{~d}^{3} \mathbf{p}_{a}}{2 E_{a}} \frac{\mathrm{~d}^{3} \mathbf{p}_{b}}{2 E_{b}} \frac{\mathrm{~d}^{3} \mathbf{p}_{c}}{2 E_{c}} \frac{\mathrm{~d}^{3} \mathbf{p}_{\widetilde{G}}}{2 E_{\widetilde{G}}}|\mathcal{M}|^{2} f_{a} f_{b}\left(1 \pm f_{c}\right) \times \delta^{4}\left(P_{a}+P_{b}-P_{c}-P_{\widetilde{G}}\right) \quad f_{B \mid F}=\frac{1}{e^{\frac{E}{T}} \mp 1}
$$

$\left|\mathcal{M}_{A, \text { sub }}\right|^{2}+\left|\mathcal{M}_{B, \text { sub }}\right|^{2}=\frac{g_{N}^{2}}{M_{\mathrm{P}}^{2}}\left(1+\frac{m_{\lambda_{N}}^{2}}{3 m_{3 / 2}^{2}}\right) C_{N}(-s+2 t)$ as taken from the Table with the amplitudes

Performing numerical integration

$$
\begin{aligned}
\gamma_{\mathrm{sub}}= & T^{6} \\
M_{\mathrm{P}}^{2} & \sum_{N=1}^{3} g_{N}^{2}\left(1+\frac{m_{\lambda_{N}}^{2}}{3 m_{3 / 2}^{2}}\right) C_{N}\left(-\mathcal{C}_{\mathrm{BBF}}^{s}+2 \mathcal{C}_{\mathrm{BFB}}^{t}\right) \\
\mathcal{C}_{\mathrm{BBF}}^{s} & =0.25957 \times 10^{-3} \\
\mathcal{C}_{\mathrm{BFB}}^{t} & =-0.13286 \times 10^{-3}
\end{aligned}
$$

γ_{D}

$$
\Pi^{<}(P)=\frac{1}{16 M_{P}^{2}} \sum_{N=1}^{3} n_{N}\left(1+\frac{m_{\lambda_{N}}^{2}}{3 m_{3 / 2}^{2}}\right) \int \frac{\mathrm{d}^{4} K}{(2 \pi)^{4}} \operatorname{Tr}\left[\not P\left[\not K, \gamma^{\mu}\right]^{*} S^{<}(Q)\left[K K, \gamma^{\nu}\right]^{*} D_{\mu \nu}^{<}(K)\right]
$$

$$
{ }^{*} S^{<}(Q)=\frac{f_{F}\left(q_{0}\right)}{2}\left[\left(\gamma_{0}-\gamma \cdot \mathbf{q} / q\right) \rho_{+}(Q)+\left(\gamma_{0}+\boldsymbol{\gamma} \cdot \mathbf{q} / q\right) \rho_{-}(Q)\right]
$$

$$
{ }^{*} D_{\mu \nu}^{<}(K)=f_{B}\left(k_{0}\right)\left[\Pi_{\mu \nu}^{T} \rho_{T}(K)+\Pi_{\mu \nu}^{L} \frac{k^{2}}{K^{2}} \rho_{L}(K)+\xi \frac{K_{\mu} K_{\nu}}{K^{4}}\right]
$$

$$
\begin{aligned}
\gamma_{D}= & \int \frac{\mathrm{d}^{3} \mathbf{p}}{2 p_{0}(2 \pi)^{3}} \Pi^{<}(p) \\
\gamma_{\mathrm{D}}= & \frac{1}{4(2 \pi)^{5} M_{\mathrm{P}}^{2}} \sum_{N=1}^{3} n_{N}\left(1+\frac{m_{\lambda_{N}}^{2}}{3 m_{3 / 2}^{2}}\right) \int_{0}^{\infty} \mathrm{d} p \int_{-\infty}^{\infty} \mathrm{d} k_{0} \int_{0}^{\infty} \mathrm{d} k \int_{|k-p|}^{k+p} \mathrm{~d} q k f_{B}\left(k_{0}\right) f_{F}\left(q_{0}\right) \\
& \times\left[\rho_{L}(K) \rho_{-}(Q)(p-q)^{2}\left((p+q)^{2}-k^{2}\right)+\rho_{L}(K) \rho_{+}(Q)(p+q)^{2}\left(k^{2}-(p-q)^{2}\right)\right. \\
& +\rho_{T}(K) \rho_{-}(Q)\left(k^{2}-(p-q)^{2}\right)\left(\left(1+k_{0}^{2} / k^{2}\right)\left(k^{2}+(p+q)^{2}\right)-4 k_{0}(p+q)\right) \\
& \left.+\rho_{T}(K) \rho_{+}(Q)\left((p+q)^{2}-k^{2}\right)\left(\left(1+k_{0}^{2} / k^{2}\right)\left(k^{2}+(p-q)^{2}\right)-4 k_{0}(p-q)\right)\right],
\end{aligned}
$$

$\gamma_{\text {top }}$

$$
\gamma_{\mathrm{top}}=\frac{T^{6}}{M_{\mathrm{P}}^{2}} 72 \mathcal{C}_{\mathrm{BBF}}^{s} \lambda_{t}^{2}\left(1+\frac{A_{t}^{2}}{3 m_{3 / 2}^{2}}\right) \quad \mathcal{C}_{\mathrm{BBF}}^{s}=0.25957 \times 10^{-3}
$$

$$
\begin{aligned}
& \rho_{L, T}(K)=2 \pi\left\{Z_{L, T}(k)\left[\delta\left(k_{0}-\omega_{L, T}(k)\right)-\delta\left(k_{0}+\omega_{L, T}(k)\right)\right]+\rho_{L, T}^{\text {cont }}(K)\right\} \\
& \rho_{ \pm}(Q)=2 \pi\left\{Z_{ \pm}(q) \delta\left(q_{0}-\omega \pm(q)\right)+Z_{\mp}(q) \delta\left(q_{0}+\omega_{\mp}(q)\right)+\rho_{ \pm}^{\text {cont }}(Q)\right\} \\
& Z_{L}(k)=\frac{\omega_{L}(k)\left(\omega_{L}^{2}(k)-k^{2}\right)}{k^{2}\left(k^{2}+2 m^{2}-\omega_{L}^{2}(k)\right)}, Z_{T}(k)=\frac{\omega_{T}(k)\left(\omega_{T}^{2}(k)-k^{2}\right)}{2 m^{2} \omega_{T}^{2}(k)-\left(\omega_{T}^{2}(k)-k^{2}\right)^{2}}, Z_{ \pm}(q)=\frac{\omega_{ \pm}(q)^{2}-q^{2}}{2 m_{f}^{2}}
\end{aligned}
$$

Result and cosmological consequences

$$
\gamma_{\mathrm{sub}}+\gamma_{\mathrm{D}}=\frac{3 \zeta(3)}{16 \pi^{3}} \frac{T^{6}}{M_{\mathrm{P}}^{2}} \sum_{N=1}^{3} c_{N} g_{N}^{2}\left(1+\frac{m_{\lambda_{N}}^{2}}{3 m_{3 / 2}^{2}}\right) \ln \left(\frac{k_{N}}{g_{N}}\right)
$$

Gauge group	c_{N}	k_{N}
$U(1)_{Y}$	41.937	0.824
$S U(2)_{L}$	68.228	1.008
$S U(3)_{c}$	21.067	6.878

Gravitino abundance

$$
\begin{aligned}
& Y_{3 / 2}(T) \simeq \frac{\gamma_{3 / 2}\left(T_{\text {reh }}\right)}{H\left(T_{\text {reh }}\right) n_{\text {rad }}\left(T_{\text {reh }}\right)} \frac{g_{* s}(T)}{g_{* s}\left(T_{\text {reh }}\right)} \\
& \Omega_{\mathrm{DM}} h^{2}=\frac{\rho_{3 / 2}\left(t_{0}\right) h^{2}}{\rho_{\text {cr }}}=\frac{m_{3 / 2} Y_{3 / 2}\left(T_{0}\right) n_{\mathrm{rad}}\left(T_{0}\right) h^{2}}{\rho_{\mathrm{cr}}} \simeq 1.33 \times 10^{24} \frac{m_{3 / 2} \gamma_{3 / 2}\left(T_{\text {reh }}\right)}{T_{\text {reh }}^{5}}
\end{aligned}
$$

Recap for gravitinos

* Gravitino is a natural DM candidate in SUGRA
* Thermally produced (Freeze-in mechanism) details explained. Improvements for this calculation are possible.
. No-thermal production (e.g. through inflaton decays) requires a particular inflation model.

Assuming $m_{1 / 2}>750 \mathrm{GeV}$ (~LHC bound) for $T_{\text {reh }} \sim 10^{9} \mathrm{GeV}$, we get $m_{3 / 2}=550 \mathrm{GeV}$. For $\mathrm{T}_{\text {reh }} \sim 10^{8} \mathrm{GeV}$ for the same $\mathrm{m}_{3 / 2}, \mathrm{~m}_{1 / 2} \sim 3,4 \mathrm{TeV}$.

PBH from SUGRA models

- Using as basis the no-scale SUGRA models one can show that adding modifications either to Kaehler potential or to superpotential can create features in the scalar potential, i.e. an inflection point, that can produce a significant enhancement in the power spectrum
* Around the inflection point the slow-roll approximation is not working, thus the numerical solution of the Mukhanov-Sasaki equation
. In each case the models satisfy the Planck constraints for inflation, produce significant amount of DM in form of PBH and GW detectable at LISA, NANOGrav etc.

Starobinsky no-scale SUGRA model

$$
\begin{gathered}
K=-3 \ln \left(T+\bar{T}-\frac{\varphi \bar{\varphi}}{3}\right) \quad W=\frac{\hat{\mu}}{2} \varphi^{2}-\frac{\lambda}{3} \varphi^{3} \\
T=\bar{T}=\frac{c}{2}, \quad \operatorname{Im} \varphi=0 \quad \varphi=\sqrt{3 c} \tanh \left(\frac{\chi}{\sqrt{3}}\right)
\end{gathered}
$$

$$
V(\chi)=\frac{\mu^{2}}{4}\left(1-e^{-\sqrt{\frac{2}{3}} \chi}\right)^{2}
$$

Modifying the Kaehler potential

$$
K=-3 \ln \left[T+\bar{T}-\frac{\varphi \bar{\varphi}}{3}+a e^{-b(\varphi+\bar{\varphi})^{2}}(\varphi+\bar{\varphi})^{4}\right]
$$

PBH production

[Nanopoulos,VCS, Stamou (2020)]

GW production

[Stamou (202 I); VCS, Stamou (2022)]

Recap for PBH

- By modifying the Kaehler potential or the superpotential PBH and GW are produced
- Tuning the parameters of the models inflationary constraints are satisfied and significant amount of DM in the form of PBH is produced, up to $\mathbf{9 0 \%}$ or even higher
- In the most of the case sizeable fine tuning is required in order to achieve these
- GW that are produced can be detected in current and future interferometers, like NANOGrav, LISA, Decigo etc

Summary

- We presented results for neutralino, gravitino and PBH DM in the context of various SUGRA models
- Gravitino DM scenario not susceptible either to direct or indirect searches, but other constraints, e.g. from BBN should apply
- Even in PBH scenarios based on SUGRA gravitino contribution cannot be avoided

Backup slides

$m_{1 / 2}=750 \mathrm{GeV}$

$$
m_{1 / 2}=4 \mathrm{TeV}
$$

$$
\begin{aligned}
& \Omega_{G W}(k)=\frac{c_{g} \Omega_{r}}{36} \int_{0}^{\frac{1}{\sqrt{3}}} \mathrm{~d} d \int_{\frac{1}{\sqrt{3}}}^{\infty} \mathrm{d} s\left[\frac{\left(s^{2}-1 / 3\right)\left(d^{2}-1 / 3\right)}{s^{2}+d^{2}}\right]^{2} P_{R}(k x) P_{R}(k y)\left(I_{c}^{2}+I_{s}^{2}\right) \\
& x=\frac{\sqrt{3}}{2}(s+d), \quad y=\frac{\sqrt{3}}{2}(s-d) . \\
& I_{c}=-36 \pi \frac{\left(s^{2}+d^{2}-2\right)^{2}}{\left(s^{2}-d^{2}\right)^{3}} \Theta(s-1) \\
& I_{s}=-36 \frac{\left(s^{2}+d^{2}-2\right)^{2}}{\left(s^{2}-d^{2}\right)^{2}}\left[\frac{\left(s^{2}+d^{2}-2\right)}{\left(s^{2}-d^{2}\right)} \ln \left|\frac{d^{2}-1}{s^{2}-1}\right|+2\right] \\
& \frac{\Omega_{P B H}}{\Omega_{D M}}\left(M_{\mathrm{PBH}}\right)=\frac{\beta\left(M_{\mathrm{PBH}}\right)}{8 \times 10^{-16}}\left(\frac{\gamma}{0.2}\right)^{3 / 2}\left(\frac{g_{*}\left(T_{f}\right)}{106.75}\right)^{-1 / 4}\left(\frac{M_{\mathrm{PBH}}}{10^{-18} \text { grams }}\right)^{-1 / 2} \\
& f_{P B H}=\int \frac{d M_{\mathrm{PBH}}}{M_{\mathrm{PBH}}} \frac{\Omega_{P B H}}{\Omega_{D M}} \\
& M_{\mathrm{PBH}}(k)=10^{18}\left(\frac{\gamma}{0.2}\right)\left(\frac{g_{*}\left(T_{f}\right)}{106.75}\right)^{-1 / 6}\left(\frac{k}{7 \times 10^{13} \mathrm{Mpc}^{-1}}\right)^{-2} \mathrm{in} \mathrm{grams} \\
& \beta\left(M_{\mathrm{PBH}}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}\left(M_{\mathrm{PBH}}\right)} \int_{\delta_{c}}^{\infty} d \delta \exp \left(-\frac{\delta^{2}}{2 \sigma^{2}\left(M_{\mathrm{PBH}}\right)}\right)} \quad \sigma^{2}\left(M_{\mathrm{PBH}}(k)\right)=\frac{16}{81} \int \frac{d k^{\prime}}{k^{\prime}}\left(\frac{k^{\prime}}{k}\right)^{4} P_{R}\left(k^{\prime}\right) \tilde{W}\left(\frac{k^{\prime}}{k}\right)
\end{aligned}
$$

