Degenerate Einstein-Maxwell theories

Colléaux Aimeric
Astrophysics Research Center of the Open University (ARCO), Israel

9 November 2023

Work in progress, in collaboration with Karim Noui (IJCLab) and David Langlois (APC)
Astroparticle symposium 2023, Pascal Institute

Introduction

Classification of quadratic interactions

Degenerate theories

Conclusion

I/ Introduction: Ghost-free U(1) vector-tensor interactions

- What are the most general interactions (in 4D) between gravity and electromagnetism

$$
\begin{equation*}
I\left[g_{\mu \nu}, A_{\mu}\right]=\int d^{4} x \sqrt{-g} \mathcal{L}\left[g_{\mu \nu}, \nabla_{\alpha}, R_{\mu \nu \sigma}{ }^{\rho}, F_{\rho \sigma}\right] \tag{1}
\end{equation*}
$$

with the same degrees of freedom as the Einstein-Maxwell theory, i.e. massless photons and gravitons ?Usually, higher order field equations generate new unstable degrees of freedom : Ostrogradski ghosts ;Unique $\mathrm{U}(1)$ vector-tensor theories admitting second order field equations, Horndeski (1976) :

$$
\begin{equation*}
I_{2 \text { sd }}\left[g_{\mu \nu}, F_{\mu \nu}\right]=\int d^{4} x \sqrt{-g}\left(R-\mathcal{F}\left(F_{\mu \nu} F^{\mu \nu},{ }^{*} F_{\mu \nu} F^{\mu \nu}\right)+\gamma^{*} F_{\sigma \rho}{ }^{*} F^{\mu \nu} R_{\mu \nu}^{\sigma \rho}\right) \tag{2}
\end{equation*}
$$

where ${ }^{*} F^{\rho \sigma}=\frac{1}{2} \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu}$ and $R_{\sigma \rho}^{\mu \nu}=g^{\gamma \mu} R_{\sigma \rho \gamma}{ }^{\nu}$. Admits many exact non-singular solutions !

- For $\gamma=0$, yields Non-Linear Electrodynamics : Born-Infeld, Conformal Electrodynamics Bandos et al (2020) ;
- For $\mathcal{F}(x, y)=\Lambda+\alpha x+\mu y^{2}$ Colléaux (2023) : Geodesically complete magnetic black string, strongly coupled non-singular Bianchi IX cosmology, non-singular electric $z=2$ Lifshitz geometry.Can we go further and consider $I\left[R_{\mu \nu \sigma}{ }^{\rho}, F_{\mu \nu}, \nabla_{\sigma} F_{\mu \nu}\right]$?

I/ Framework for answering : A detour on DHOST

- In the case of scalar-tensor theories, $\nabla_{\alpha} \nabla_{\beta} \phi$ already participates to Horndeski second order theories:

$$
\begin{gather*}
I_{\text {Horndeski }}=\int d^{4} x \sqrt{-g} \sum_{n=2}^{5} \mathcal{L}_{n}^{\mathrm{H}} \quad X=-\partial_{\mu} \phi \partial^{\mu} \phi \tag{3}\\
\mathcal{L}_{2}^{\mathrm{H}}:=G_{2}(\phi, X), \quad \mathcal{L}_{3}^{\mathrm{H}}:=G_{3}(\phi, X) \square \phi, \quad \mathcal{L}_{4}^{\mathrm{H}}:=G_{4}(\phi, X) R+G_{4, X} \delta_{\mu \nu}^{\alpha \beta} \nabla^{\mu} \nabla_{\alpha} \phi \nabla^{\nu} \nabla_{\beta} \phi \\
\mathcal{L}_{5}^{\mathrm{H}}:=G_{5}(\phi, X) G_{\nu}^{\mu} \nabla^{\nu} \nabla_{\mu} \phi-\frac{1}{6} G_{5, X} \delta_{\mu \nu \sigma}^{\alpha \beta \rho} \nabla^{\mu} \nabla_{\alpha} \phi \nabla^{\nu} \nabla_{\beta} \phi \nabla^{\sigma} \nabla_{\rho} \phi . \tag{4}
\end{gather*}
$$

- However, degenerate higher order scalar-tensor theories (DHOST), propagating only a massless graviton and a scalar field exist :

$$
\begin{equation*}
I_{\text {quadratic }}=\int d^{4} x \sqrt{-g}\left(f(\phi, X) R+C^{\mu \nu \rho \sigma}\left(g, \phi, \partial_{\alpha} \phi\right) \nabla_{\mu} \nabla_{\nu} \phi \nabla_{\rho} \nabla_{\sigma} \phi\right) \tag{5}
\end{equation*}
$$

where C is the most general tensor built from $\partial_{\sigma} \phi$, providing that some degeneracy conditions (DC) on f and C hold ;

Roughly speaking, DC are satisfied if a factorization occurs after an ADM decomposition,

$$
\begin{equation*}
\mathcal{L}_{\mathrm{kin}}=\mathcal{K}^{i j k l} K_{i j} K_{k l}+\mathcal{B}^{i j} \ddot{\phi} K_{i j}+\mathcal{A} \ddot{\phi}^{2}+V(\dot{\phi})=\mathcal{K}^{i j k l}\left(K_{i j}+\mathcal{E}_{i j} \ddot{\phi}\right)\left(K_{k l}+\mathcal{E}_{k l} \ddot{\phi}\right)+V(\dot{\phi}) \tag{6}
\end{equation*}
$$

where $\{\mathcal{K}, \mathcal{B}, \mathcal{A}, \mathcal{E}\}$ come from $\{f, C\}$ and depend on $\phi, \dot{\phi}, \partial_{i} \phi$.

I/ Degenerate Einstein-Maxwell theories

- The generalization of quadratic DHOST for $U(1)$ gauge symmetry is

$$
I_{\text {quadratic }}=\int d^{4} x \sqrt{-g}\left(\mathcal{F}\left(F^{2},{ }^{*} F F\right)+\frac{1}{4} \mathscr{A}^{\mu \nu \rho \sigma}\left(F_{\alpha \beta}, g_{\gamma \delta}\right) R_{\mu \nu \rho \sigma}+\mathscr{B}^{\gamma \mu \nu, \delta \rho \sigma}\left(F_{\alpha \beta}, g_{\gamma \delta}\right) \nabla_{\gamma} F_{\mu \nu} \nabla_{\delta} F_{\rho \sigma}\right),
$$

where \mathscr{A} and \mathscr{B} are the most general tensors built from $F_{\rho \sigma}$ with the corresponding symmetries. Thus, need to :
\square Classify \mathscr{A} and \mathscr{B};Perform an ADM decomposition of (7) and find the degeneracy conditions so that only massless photons and gravitons propagate ;
\square Remark: The DC are partial differential equations between the free functions inside \mathscr{A} and \mathscr{B}. Thus, to avoid spurious solutions corresponding to generic boundary terms or 4D redundancies, need minimal basis for \mathscr{A} and \mathscr{B};

- Proof of principle by $\mathrm{U}(1)$-preserving disformal transformations Naruko, De Felice (2021) :

$$
\begin{equation*}
g_{\mu \nu} \longrightarrow \alpha\left(F^{2},{ }^{*} F F\right) g_{\mu \nu}+\beta\left(F^{2},{ }^{*} F F\right) F_{\mu}{ }^{\sigma} F_{\sigma \nu} \tag{8}
\end{equation*}
$$

If applied to $I_{2 s d}\left[g_{\mu \nu}, F_{\mu \nu}\right]$ and the transformation is invertible, the degrees of freedom are preserved ;

I/ Further motivations: Bopp-Podosky ED and effective QED actions

- Bopp-Podolsky electrodynamics

$$
\begin{equation*}
I_{B P}=\int d^{4} x\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{a^{2}}{2} \partial_{\mu} F^{\mu \nu} \partial^{\rho} F_{\rho \nu}\right) \tag{9}
\end{equation*}
$$Propagator (in Feynmann-t'Hooft gauge) :

$$
\begin{equation*}
P_{\mu \nu}(k)=\eta_{\mu \nu}\left(\frac{1}{k^{2}}-\frac{1}{k^{2}-1 / a^{2}}\right) \tag{10}
\end{equation*}
$$So one photon and one ghost-like "Pauli-Villars" massive photon (a Proca field) of mass $1 / a^{2}$: 5 degrees of freedomNon-singular modified Coulomb potential for specific boundary cdts : $V(r)=\frac{q}{r}\left(1-e^{-r / a}\right)$

- QED one-loop effective actions
\square Non minimal coupling " $R F^{2}$ " and BP derivative term $\nabla F \nabla F$ in one (electron) loop corrections Drummond et al (1979);Euler-Heisenberg non-perturbative one-loop effective action for QED in constant background EM field

$$
\begin{equation*}
L_{\mathrm{eff}}=\mathcal{F}\left(F_{\mu \nu} F^{\mu \nu},{ }^{*} F_{\mu \nu} F^{\mu \nu}\right) \tag{11}
\end{equation*}
$$Non-perturbative one-loop effective action for (spinor) QED in slowly varying EM field Gusynin et al (1999)

I/ Derivative Expansion of the Effective Action for spinor QED in 3+1

$$
A_{(j) \mu \nu}=\frac{-\bar{f}_{j}^{2} \eta_{\mu \nu}+f_{j} F_{\mu \nu}+F_{\mu \nu}^{2}-i \bar{f}_{j} \stackrel{*}{F}_{\mu \nu}}{2\left(f_{j}^{2}-\bar{f}_{j}^{2}\right)}, \quad \begin{array}{lll}
f_{1,2}= \pm i K_{-}, & f_{3,4}= \pm K_{+} ; \\
\bar{f}_{1,2}=\mp K_{+}, & \bar{f}_{3,4}=\mp i K_{-} . & K_{+}=\sqrt{\sqrt{\mathcal{F}^{2}+\mathcal{G}^{2}}+\mathcal{F}}, \quad K_{-}=\sqrt{\sqrt{\mathcal{F}^{2}+\mathcal{G}^{2}}-\mathcal{F}} .
\end{array}
$$

$$
\mathcal{F}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}, \quad \mathcal{G}=\frac{1}{8} \epsilon^{\mu \nu \lambda \kappa} F_{\lambda \kappa} F_{\mu \nu}
$$

$$
\operatorname{tr}\langle x| U(\tau)|x\rangle=\operatorname{tr}\langle x| U(\tau)|x\rangle_{0}
$$

$$
\times\left[1-\frac{i}{8} e F_{\nu \lambda, \mu \kappa} \sum_{j, l}\left(C^{V}\left(f_{j}, f_{l}\right)\left(A_{(j)}^{\nu \lambda} A_{(l)}^{\mu \kappa}+2 A_{(j)}^{\nu \mu} A_{(l)}^{\lambda \kappa}\right)+2 C^{W}\left(f_{j}, f_{l}\right) A_{(j)}^{\lambda \nu} A_{(l)}^{\mu \kappa}\right)\right.
$$

$$
-\frac{i}{18} e^{2} F_{\nu \lambda, \mu} F_{\sigma \kappa, \rho} \sum_{j, l, k}\left(9 C_{1}^{W W}\left(f_{j}, f_{l}, f_{k}\right) A_{(j)}^{\kappa \sigma} A_{(l)}^{\lambda \nu} A_{(k)}^{\mu \rho}+9 C_{2}^{W W}\left(f_{j}, f_{l}, f_{k}\right) A_{(j)}^{\kappa \lambda} A_{(l)}^{\sigma \nu} A_{(k)}^{\mu \rho}\right.
$$

$$
+6 C_{1}^{V W}\left(f_{j}, f_{l}, f_{k}\right) A_{(j)}^{\sigma \kappa}\left(A_{(l)}^{\nu \lambda} A_{(k)}^{\mu \rho}+A_{(l)}^{\nu \mu} A_{(k)}^{\lambda \rho}\right)+6 C_{2}^{V W}\left(f_{j}, f_{l}, f_{k}\right) A_{(j)}^{\sigma \kappa} A_{(l)}^{\nu \rho} A_{(k)}^{\lambda \mu}
$$

$$
-C_{1}^{V V}\left(f_{j}, f_{l}, f_{k}\right)\left(A_{(j)}^{\nu \lambda} A_{(l)}^{\kappa \sigma} A_{(k)}^{\mu \rho}+A_{(j)}^{\nu \mu} A_{(l)}^{\kappa \rho} A_{(k)}^{\lambda \sigma}+2 A_{(j)}^{\nu \lambda} A_{(l)}^{\kappa \rho} A_{(k)}^{\mu \sigma}\right)
$$

$$
-C_{2}^{V V}\left(f_{j}, f_{l}, f_{k}\right)\left(A_{(j)}^{\nu \sigma} A_{(l)}^{\kappa \lambda} A_{(k)}^{\mu \rho}+A_{(j)}^{\nu \rho} A_{(l)}^{\kappa \mu} A_{(k)}^{\lambda \sigma}+2 A_{(j)}^{\nu \sigma} A_{(l)}^{\kappa \mu} A_{(k)}^{\lambda \rho}\right)
$$

$$
-2 C_{3}^{V V}\left(f_{j}, f_{l}, f_{k}\right)\left(A_{(j)}^{\nu \lambda} A_{(l)}^{\kappa \mu} A_{(k)}^{\sigma \rho}+A_{(j)}^{\kappa \rho} A_{(l)}^{\nu \sigma} A_{(k)}^{\lambda \mu}\right)-C_{4}^{V V}\left(f_{j}, f_{l}, f_{k}\right) A_{(j)}^{\nu \kappa} A_{(l)}^{\lambda \mu} A_{(k)}^{\sigma \rho}
$$

$$
\left.\left.-C_{5}^{V V}\left(f_{j}, f_{l}, f_{k}\right) A_{(j)}^{\nu \kappa}\left(A_{(l)}^{\lambda \sigma} A_{(k)}^{\mu \rho}+A_{(l)}^{\lambda \rho} A_{(k)}^{\mu \sigma}\right)\right)\right]
$$

II/ Classification of quadratic interactions

- $\mathscr{A}^{\mu \nu \rho \sigma}$ and $\mathscr{B}^{\gamma \mu \nu, \delta \rho \sigma}$ are constructed from (Cayley-Hamilton theorem in 4D) :2 functions $\left\{F^{2},{ }^{*} F F\right\}$ or equivalently $\left\{F^{2}, F^{4}\right\}$;2 symmetric matrices $\left\{g_{\mu \nu}, F_{\mu}{ }^{\alpha} F_{\alpha \nu}\right\}$, and 2 antisymmetric ones $\left\{F_{\mu \nu}, F_{\mu}{ }^{\alpha} F_{\alpha \beta} F^{\beta}{ }_{\nu}\right\}$;Using Levi-Civita tensor is redundant ;
- Define

$$
\begin{equation*}
F_{I}^{\mu \nu} \equiv\left\{g^{\mu \nu}, F^{\mu \nu}, F^{\mu \alpha} F_{\alpha}^{\nu}, F^{\mu \alpha} F_{\alpha \beta} F^{\beta \nu}\right\} \tag{12}
\end{equation*}
$$

- Classification of $\mathscr{B}^{\gamma \mu \nu, \delta \rho \sigma}\left(F_{I} \ldots F_{K}\right) \nabla_{\gamma} F_{\mu \nu} \nabla_{\delta} F_{\rho \sigma}$
\square Fully dressed vertices : 2 vectors $u_{(1,2) I J}^{\mu} \equiv\left(F_{I} F_{J} \nabla F\right)_{1,2}^{\mu}, 1$ tensor $t_{I J K}^{\mu \nu \sigma} \equiv F_{I}^{\mu \bar{\mu}} F_{J}^{\nu \bar{\nu}} F_{K}^{\sigma \bar{\sigma}} \nabla_{\bar{\mu}} F_{\bar{\nu} \bar{\sigma}}$;Thus 5 family of scalars: $\left\{u_{1} u_{1}, u_{2} u_{2}, u_{1} u_{2}, t t_{1}, t t_{2}\right\}$ and 124 of them in total ;

$$
\begin{equation*}
\mathscr{B}^{\gamma \mu \nu, \delta \rho \sigma}\left(F_{\alpha \beta}, g_{\gamma \delta}\right) \nabla_{\gamma} F_{\mu \nu} \nabla_{\delta} F_{\rho \sigma}=\sum_{i=1}^{124} \alpha_{i} S_{i} \tag{13}
\end{equation*}
$$Need to use Bianchi identity $\nabla_{[\mu} F_{\nu \sigma]}=0: 70$Need to use DDIs (dimensionally dependant identities) : 88 for instance

$$
\begin{align*}
\mathscr{D}_{I J K, A B} & \equiv F_{I b_{1}}^{\left[a_{1}\right.} F_{J b_{2}}^{a_{2}} F_{K b_{3}}^{a_{3}} F_{A a_{4}}^{a_{4}} F_{B a_{5}}^{\left.a_{5}\right]}(\nabla F \nabla F)_{\left[a_{1} a_{2} a_{3}\right]}^{b_{1} b_{2} b_{3}}=0 \\
\mathscr{D}_{I J K, A B C} & \equiv F_{I i}^{j} F_{J b_{1}}^{\left[a_{1}\right.} F_{K b_{2}}^{a_{2}} F_{A a_{3}}^{a_{3}} F_{B a_{4}}^{a_{4}} F_{C a_{5}}^{\left.a_{5}\right]}(\nabla F \nabla F)_{\left[a_{1} a_{2}\right] j_{4}}^{b_{1} b_{2} i}=0 \tag{14}
\end{align*}
$$

II/ Classification of quadratic interactions

- Considering boundary terms as well (complicated) we found that \mathscr{A} and \mathscr{B} can be reduced to :

$$
\begin{equation*}
\mathscr{A}^{\mu \nu \rho \sigma}=\beta_{1} g^{\mu \rho} g^{\nu \sigma}+\beta_{2} F^{\mu \nu} F^{\rho \sigma}+\beta_{3} F_{(2)}^{\mu \rho} g^{\nu \sigma}+\beta_{4} F_{(2)}^{\mu \rho} F_{(2)}^{\nu \sigma} \tag{15}
\end{equation*}
$$

and

$$
\begin{align*}
\mathscr{B}^{\gamma \mu \nu, \delta \rho \sigma} & =\alpha_{1} g^{\gamma \sigma} g^{\nu \delta} g^{\rho \mu}+\alpha_{2} F_{(2)}^{\rho \mu} g^{\gamma \nu} g^{\delta \sigma}+\alpha_{3} F_{(2)}^{\delta \rho} g^{\gamma \nu} g^{\sigma \mu}+\alpha_{4} F_{(2)}^{\delta \mu} g^{\gamma \sigma} g^{\nu \rho}+\alpha_{5} F_{(2)}^{\rho \mu} g^{\gamma \sigma} g^{\nu \delta} \\
& +\alpha_{6} F^{\delta \mu} F^{\rho \sigma} g^{\gamma \nu}-\alpha_{7} F^{\mu \nu} F^{\delta \rho} g^{\gamma \sigma}+\alpha_{8} F_{(2)}^{\delta \rho} F_{(2)}^{\sigma \mu} g^{\gamma \nu}+\alpha_{9} F_{(2)}^{\gamma \rho} F_{(2)}^{\mu \delta} g^{\nu \sigma}+\alpha_{10} F_{(2)}^{\nu \delta} F_{(2)}^{\mu \rho} g^{\gamma \sigma} \tag{16}\\
& +\alpha_{11} F^{\gamma \rho} F^{\mu \nu} F_{(2)}^{\delta \sigma}-\alpha_{12} F^{\rho \mu} F_{(3)}^{\nu \delta} g^{\gamma \sigma}+\alpha_{13} F_{(2)}^{\gamma \sigma} F_{(2)}^{\nu \delta} F_{(2)}^{\rho \mu}+\alpha_{14} F^{\rho \sigma} F_{(2)}^{\delta \mu} g^{\gamma \nu}+\alpha_{15} F_{(2)}^{\delta \mu} F_{(3)}^{\gamma \rho} g^{\nu \sigma} .
\end{align*}
$$

All the coefficients α, β, γ are functions of the two electromagnetic invariants available in four dimensions

III/ Degenerate theories: Lagrangian decompositions

- Recall the action

$$
\begin{equation*}
I\left[g_{\mu \nu}, F_{\mu \nu}\left(A_{\mu}\right)\right]=\int d^{4} x \sqrt{-g}\left(\frac{1}{4} \mathscr{A}^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}+\mathscr{B}^{\gamma \mu \nu, \delta \rho \sigma} \nabla_{\gamma} F_{\mu \nu} \nabla_{\delta} F_{\rho \sigma}\right) \tag{17}
\end{equation*}
$$

- Similarly to DHOSTs, introduce equivalent action :

$$
\begin{equation*}
I_{\mathrm{eq}}\left[g_{\mu \nu}, F_{\mu \nu}, \lambda_{\mu \nu}, A_{\mu}\right]=I\left[g_{\mu \nu}, F_{\mu \nu}\right]+\int d^{4} x \sqrt{-g} \lambda^{\mu \nu}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-F_{\mu \nu}\right), \tag{18}
\end{equation*}
$$

Due to $\mathrm{U}(1)$ gauge symmetry, there is no time derivative of the magnetic part of the two-form $F_{\mu \nu}$

$$
\begin{equation*}
\nabla_{\sigma} F_{\mu \nu}=\lambda_{\sigma \mu \nu}^{\rho} \dot{E}_{\rho}+\Lambda_{\sigma \mu \nu}^{\alpha \beta} K_{\alpha \beta}+(\ldots) a+(\ldots) D E+(\ldots) D B \tag{19}
\end{equation*}
$$

where D is the spatial covariant derivative, the time derivative of the electric field is encoded into the following spatial quantity

$$
\begin{equation*}
\dot{E}_{\mu} \equiv n^{\sigma} \nabla_{\sigma} E_{\mu}+n_{\mu} a^{\sigma} E_{\sigma} \tag{20}
\end{equation*}
$$

After IBP

$$
\begin{align*}
I_{\mathrm{kin}} & =\int d^{4} x \sqrt{-g}\left(\mathscr{C}^{\mu \nu \rho \sigma} K_{\mu \nu} K_{\rho \sigma}+2 \mathscr{D}^{\mu \nu \sigma} K_{\mu \nu} \dot{E}_{\sigma}+\mathscr{E}^{\rho \sigma} \dot{E}_{\rho} \dot{E}_{\sigma}\right) \\
I_{\text {lin }} & =\int d^{4} x \sqrt{-g}\left(\mathscr{F}^{\mu \nu} K_{\mu \nu}+\mathscr{G}^{\mu} \dot{E}_{\mu}\right) \tag{21}
\end{align*}
$$

III/ Degenerate theories: Constraints and degrees of freedom

- Decomposition of $A_{\mu}=-A_{0} n_{\mu}+\hat{A}_{\mu}$ and $\lambda_{\mu \nu}=\varepsilon_{\mu \nu \sigma} \lambda^{\sigma}-n_{[\mu} \pi_{\nu]}$

$$
\begin{equation*}
\int d^{4} x \sqrt{-g} \lambda^{\mu \nu}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-F_{\mu \nu}\right)=\int d^{4} x \sqrt{-g}\left(\pi^{\mu} \partial_{t} \hat{A}_{\mu}+A_{0} G+\lambda^{\mu} C_{\mu}-\pi_{\mu} E^{\mu}\right) \tag{22}
\end{equation*}
$$

- Start from 30-dimensional non-physical phase-space with :A_{0} and λ_{i} (and N and N^{i}) are Lagrange multipliers;From $F_{\mu \nu} \longrightarrow\left\{E^{i}, B^{i}\right\}$ and their momenta $\left\{\pi_{E}^{i}, \pi_{B}^{i}\right\}$, From $A_{\mu} \longrightarrow \hat{A}_{i}$ and its momentum π^{i} (coming from $\lambda_{\mu \nu}$);
$\square 5$ first class constraints : H_{i}, H_{0}, G : vector, scalar and Gauss constraints ;6 second class ;

$$
\begin{equation*}
C_{i}=B_{i}-\epsilon_{i j k} \partial^{j} \hat{A}^{k}, \quad \pi_{B}^{i} \approx 0 \tag{23}
\end{equation*}
$$Therefore 7 degrees from freedom : 2 gravitons, 2 photons, 3 ghosts, if possible to invert

$$
\left[\begin{array}{l}
\pi_{E}^{\alpha} \tag{24}\\
\pi^{\mu \nu}
\end{array}\right]=\left[\begin{array}{cc}
\mathscr{E}^{\alpha \beta} & \mathscr{D}^{\rho \sigma \alpha} \\
\mathscr{D}^{\mu \nu \beta} & \mathscr{C}^{\mu \nu \rho \sigma}
\end{array}\right]\left[\begin{array}{c}
\dot{E}_{\beta} \\
K_{\rho \sigma}
\end{array}\right]+\left[\begin{array}{c}
\mathcal{G}^{\alpha} \\
\mathcal{F}^{\mu \nu}
\end{array}\right]
$$In order to avoid ghosts, we need both degeneracy and further constraints.

III/ Degenerate theories: Quasi-linear electrodynamics

- Consider flat Minskowski space in Cartesian coordinates so that

$$
\begin{align*}
I_{\mathrm{kin}} & =\int d^{4} x \mathscr{E}^{\rho \sigma}(E, B) \dot{E}_{\rho} \dot{E}_{\sigma} \tag{25}\\
I_{\mathrm{lin}} & =\int d^{4} x\left(\mathscr{G}_{1}^{\mu \alpha \beta}(E, B) \partial_{\alpha} E_{\beta}+\mathscr{G}_{2}^{\mu \alpha \beta}(E, B) \partial_{\alpha} B_{\beta}\right) \dot{E}_{\mu}
\end{align*}
$$

- Quasi-linear degenerate theories obtained when no second derivatives $\mathscr{E}^{\alpha \beta}=0$. This condition yields five theories:

$$
\begin{equation*}
\mathscr{L}_{\mathrm{QL}}=\sum_{p=1}^{5} \gamma_{p} \mathscr{L}_{p} \tag{26}
\end{equation*}
$$

where γ_{p} are $\mathbf{U}(1)$ functions and

$$
\begin{array}{rlrl}
\mathscr{L}_{1} & =F_{(2)}^{\mu \nu} \nabla_{[\gamma \mid} F_{\mu}^{\gamma} \nabla_{\mid \lambda]} F_{\nu}{ }^{\lambda}, & \mathscr{L}_{2}=F_{(2)}^{\mu \nu} \nabla_{[\mu \mid} F_{\nu \gamma} \nabla_{\mid \lambda]} F_{\gamma}{ }^{\lambda}, \\
\mathscr{L}_{3}=F^{\mu \nu} \nabla_{[\mu} F^{2} \nabla_{\gamma]} F_{\nu}^{\gamma}, & \mathscr{L}_{4}=F_{(2)}^{\mu \nu} F_{(2)}^{\rho \sigma} \nabla_{[\nu \mid} F_{\mu \rho} \nabla_{\mid \gamma]} F_{\rho}{ }^{\gamma}, \tag{27}\\
\mathscr{L}_{5}=\frac{P^{2}}{16} \nabla_{\sigma} F_{\mu \nu} \nabla^{\mu} F^{\nu \sigma}+\frac{F^{2}}{8} F^{\mu \nu} \nabla_{\mu} F_{\nu \gamma} \nabla^{\gamma} F^{2}-2 F^{\mu \nu} F_{(3)}^{\rho \sigma} \nabla_{\sigma} F_{\nu \gamma} \nabla^{\gamma} F_{\mu \rho}+F_{(2)}^{\mu \nu} F_{(2)}^{\rho \sigma} \nabla_{\nu} F_{\mu \rho} \nabla_{\gamma} F_{\rho}{ }^{\gamma}
\end{array}
$$

III/ Degenerate theories: Third order non-minimal coupling interaction

- If we require $\mathscr{E}=0$ and $\mathscr{D}=0$, so that only terms quadratic in the extrinsic curvature appear in the kinetic term, we obtain,

$$
\begin{equation*}
\mathscr{L}_{\mathrm{Grav}}=a R+b^{*} F_{\sigma \rho}{ }^{*} F^{\mu \nu} R_{\mu \nu}^{\sigma \rho}+c \mathcal{L} \tag{28}
\end{equation*}
$$

where a, b, c are coupling constants. The new term is given by

$$
\begin{equation*}
\mathcal{L}=\frac{1}{4} \delta_{\alpha \beta \gamma \delta}^{\mu \nu \rho \sigma} R_{\mu \nu}^{\alpha \beta}\left(F_{2 \rho}^{\gamma} F_{2 \sigma}^{\delta}+F^{2} F_{\rho \sigma} F^{\gamma \delta}\right)-2 F^{2} F_{2}^{\mu \nu} G_{\mu \nu}-2\left(\mathscr{L}_{1}-2 \mathscr{L}_{2}+\mathscr{L}_{3}\right) \tag{29}
\end{equation*}
$$

where the \mathscr{L}_{i} are given by $\mathrm{Eq}(27)$.Similar to the unique curvature invariant in 4D leading to third order equations of motion Lovelock (1969) ;

$$
\begin{equation*}
C={ }^{*} R_{\rho \sigma}^{\mu \nu *} R_{\alpha \beta}^{\rho \sigma *} R_{\mu \nu}^{\alpha \beta} \tag{30}
\end{equation*}
$$However, similarly to $R+\alpha C$ which propagates 2 gravitons plus 3 Ostrogradski ghosts, we expect \mathcal{L} to be unstable (Hamiltonian linear in momentum thus unbounded from below) Crisostomi et al(2018) ;

IV/ Conclusion :

- We classified quadratic $U(1)$-vector-tensor theories in ∇F and $U(1)$ non-minimal couplings linear in curvature ;
- Some degenerate theories have been found (in particular quasi-linear in flat space), but there are hints they still propagate Ostrogradski ghosts ;
- Can we obtain a classification of ghost-free theories like in DHOSTS ?
- If so, will the physically viable theories among them reduce to $\mathrm{U}(1)$-preserving Disformal transformations of $I_{2 \text { sd }}[A, g]$?
- Remark that $\mathrm{U}(1)$ Disformal transformations of Einstein-Maxwell theory have been studied in Gumrukcuoglu, Namba (2020), in Minamitsuji (2020) for disformed Kerr-Newman (breaks circularity condition), in Bittencourt (2023), where exotic singularities have been found in disformed Maxwell ED ;
- Use the tools to obtain minimal basis of invariants to obtain/reduce effective action in QFT (in which lots of redundancy enters) : possible interesting cancellations or computational efficiency or new truncations ? What about gravitational actions ?

Thank you for your attention!

