
Summary Introduction Classification of quadratic interactions Degenerate theories Conclusion

Degenerate Einstein-Maxwell theories
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I/ Introduction : Ghost-free U(1) vector-tensor interactions

• What are the most general interactions (in 4D) between gravity and electromagnetism

I [gµν , Aµ] =
∫
d4x
√
−g L [gµν ,∇α, Rµνσρ, Fρσ] , (1)

with the same degrees of freedom as the Einstein-Maxwell theory, i.e. massless photons and gravitons ?
� Usually, higher order field equations generate new unstable degrees of freedom : Ostrogradski ghosts ;
� Unique U(1) vector-tensor theories admitting second order field equations, Horndeski (1976) :

I2sd [gµν , Fµν ] =
∫
d4x
√
−g
(
R−F (FµνFµν , ∗FµνFµν) + γ ∗Fσρ

∗FµνRσρµν
)
, (2)

where ∗F ρσ = 1
2ε
µνρσFµν and Rµνσρ = gγµR ν

σργ . Admits many exact non-singular solutions !
• For γ = 0, yields Non-Linear Electrodynamics : Born-Infeld, Conformal Electrodynamics Bandos et al (2020) ;
• For F (x, y) = Λ + αx+ µy2 Colléaux (2023) : Geodesically complete magnetic black string, strongly coupled

non-singular Bianchi IX cosmology, non-singular electric z = 2 Lifshitz geometry.
� Can we go further and consider I [Rµνσρ, Fµν ,∇σFµν ] ?
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I/ Framework for answering : A detour on DHOST
• In the case of scalar-tensor theories, ∇α∇βφ already participates to Horndeski second order theories :

IHorndeski =
∫
d4x
√
−g

5∑
n=2

LH
n X = −∂µφ∂µφ (3)

LH
2 := G2 (φ,X) , LH

3 := G3 (φ,X)�φ , LH
4 := G4 (φ,X)R+G4,Xδ

αβ
µν∇µ∇αφ∇ν∇βφ

LH
5 := G5 (φ,X)Gµν∇ν∇µφ−

1
6G5,Xδ

αβρ
µνσ∇µ∇αφ∇ν∇βφ∇σ∇ρφ .

(4)

• However, degenerate higher order scalar-tensor theories (DHOST), propagating only a massless graviton and
a scalar field exist :

Iquadratic =
∫
d4x
√
−g (f (φ,X)R+ Cµνρσ (g, φ, ∂αφ)∇µ∇νφ∇ρ∇σφ) (5)

where C is the most general tensor built from ∂σφ, providing that some degeneracy conditions (DC) on f
and C hold ;
� Roughly speaking, DC are satisfied if a factorization occurs after an ADM decomposition,

Lkin = KijklKijKkl + Bij φ̈Kij +Aφ̈2 + V
(
φ̇
)

= Kijkl
(
Kij + Eij φ̈

) (
Kkl + Eklφ̈

)
+ V

(
φ̇
)

(6)

where {K,B,A, E} come from {f, C} and depend on φ, φ̇, ∂iφ.
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I/ Degenerate Einstein-Maxwell theories
• The generalization of quadratic DHOST for U(1) gauge symmetry is

Iquadratic =
∫
d4x
√
−g
(
F
(
F 2, ∗FF

)
+ 1

4A µνρσ (Fαβ , gγδ)Rµνρσ + Bγµν,δρσ (Fαβ , gγδ)∇γFµν∇δFρσ
)
, (7)

where A and B are the most general tensors built from Fρσ with the corresponding symmetries. Thus, need
to :
� Classify A and B ;
� Perform an ADM decomposition of (7) and find the degeneracy conditions so that only massless

photons and gravitons propagate ;
� Remark : The DC are partial differential equations between the free functions inside A and B. Thus,

to avoid spurious solutions corresponding to generic boundary terms or 4D redundancies, need minimal
basis for A and B;

• Proof of principle by U(1)-preserving disformal transformations Naruko, De Felice (2021) :

gµν −→ α
(
F 2, ∗FF

)
gµν + β

(
F 2, ∗FF

)
Fµ

σFσν (8)

If applied to I2sd [gµν , Fµν ] and the transformation is invertible, the degrees of freedom are preserved ;
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I/ Further motivations : Bopp-Podosky ED and effective QED actions
• Bopp-Podolsky electrodynamics

IBP =
∫
d4x

(
−1

4FµνF
µν − a2

2 ∂µF
µν∂ρFρν

)
(9)

� Propagator (in Feynmann-t’Hooft gauge) :

Pµν(k) = ηµν

(
1
k2 −

1
k2 − 1/a2

)
(10)

� So one photon and one ghost-like ”Pauli-Villars” massive photon (a Proca field) of mass 1/a2 :
5 degrees of freedom

� Non-singular modified Coulomb potential for specific boundary cdts : V (r) = q
r

(
1− e−r/a

)
• QED one-loop effective actions

� Non minimal coupling “RF 2” and BP derivative term ∇F∇F in one (electron) loop corrections
Drummond et al (1979);

� Euler-Heisenberg non-perturbative one-loop effective action for QED in constant background EM field
Leff = F (FµνFµν , ∗FµνFµν) (11)

� Non-perturbative one-loop effective action for (spinor) QED in slowly varying EM field Gusynin et al (1999)
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I/ Derivative Expansion of the Effective Action for spinor QED in 3+1
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II/ Classification of quadratic interactions
• A µνρσ and Bγµν,δρσ are constructed from (Cayley-Hamilton theorem in 4D) :

� 2 functions {F 2, ∗FF} or equivalently {F 2, F 4} ;
� 2 symmetric matrices {gµν , FµαFαν}, and 2 antisymmetric ones {Fµν , FµαFαβF βν} ;
� Using Levi-Civita tensor is redundant ;

• Define
FµνI ≡ {gµν , Fµν , FµαFαν , FµαFαβF βν} (12)

• Classification of Bγµν,δρσ (FI ...FK)∇γFµν∇δFρσ
� Fully dressed vertices : 2 vectors uµ(1,2)IJ ≡ (FIFJ∇F )µ1,2, 1 tensor tµνσIJK ≡ F

µµ̄
I F νν̄J Fσσ̄K ∇µ̄Fν̄σ̄ ;

� Thus 5 family of scalars : {u1u1, u2u2, u1u2, tt1, tt2} and 124 of them in total ;

Bγµν,δρσ (Fαβ , gγδ)∇γFµν∇δFρσ =
124∑
i=1

αiSi (13)

� Need to use Bianchi identity ∇[µFνσ] = 0 : 70
� Need to use DDIs (dimensionally dependant identities) : 88 for instance

DIJK,AB ≡ F [a1
Ib1
F a2
Jb2

F a3
Kb3

F a4
Aa4

F
a5]
Ba5

(∇F∇F )b1b2b3
[a1a2a3] = 0

DIJK,ABC ≡ F jIiF
[a1
Jb1

F a2
Kb2

F a3
Aa3

F a4
Ba4

F
a5]
Ca5

(∇F∇F )b1b2i
[a1a2]j = 0

(14)
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II/ Classification of quadratic interactions

• Considering boundary terms as well (complicated) we found that A and B can be reduced to :

A µνρσ = β1g
µρgνσ + β2F

µνF ρσ + β3F
µρ
(2)g

νσ + β4F
µρ
(2)F

νσ
(2) , (15)

and

Bγµν,δρσ =α1g
γσgνδgρµ + α2F

ρµ
(2)g

γνgδσ + α3F
δρ
(2)g

γνgσµ + α4F
δµ
(2)g

γσgνρ + α5F
ρµ
(2)g

γσgνδ

+α6F
δµF ρσgγν − α7F

µνF δρgγσ + α8F
δρ
(2)F

σµ
(2) g

γν + α9F
γρ
(2)F

µδ
(2)g

νσ + α10F
νδ
(2)F

µρ
(2)g

γσ

+α11F
γρFµνF δσ(2) − α12F

ρµF νδ(3)g
γσ + α13F

γσ
(2)F

νδ
(2)F

ρµ
(2) + α14F

ρσF δµ(2)g
γν + α15F

δµ
(2)F

γρ
(3)g

νσ.

(16)

All the coefficients α, β, γ are functions of the two electromagnetic invariants available in four dimensions
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III/ Degenerate theories : Lagrangian decompositions
• Recall the action

I [gµν , Fµν (Aµ)] =
∫
d4x
√
−g
(1

4A µνρσRµνρσ + Bγµν,δρσ∇γFµν∇δFρσ
)
, (17)

• Similarly to DHOSTs, introduce equivalent action :

Ieq [gµν , Fµν , λµν , Aµ] = I [gµν , Fµν ] +
∫
d4x
√
−gλµν (∂µAν − ∂νAµ − Fµν) , (18)

Due to U(1) gauge symmetry, there is no time derivative of the magnetic part of the two-form Fµν

∇σFµν = λρσµνĖρ + ΛαβσµνKαβ + (. . . ) a+ (. . . )DE + (. . . )DB (19)
where D is the spatial covariant derivative, the time derivative of the electric field is encoded into the
following spatial quantity

Ėµ ≡ nσ∇σEµ + nµa
σEσ, (20)

After IBP

Ikin =
∫
d4x
√
−g
(
C µνρσKµνKρσ + 2DµνσKµνĖσ + E ρσĖρĖσ

)
,

Ilin =
∫
d4x
√
−g
(
FµνKµν + G µĖµ

)
,

(21)
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III/ Degenerate theories : Constraints and degrees of freedom
• Decomposition of Aµ = −A0nµ + Âµ and λµν = εµνσλ

σ − n[µπν]∫
d4x
√
−gλµν (∂µAν − ∂νAµ − Fµν) =

∫
d4x
√
−g
(
πµ∂tÂµ +A0G+ λµCµ − πµEµ

)
(22)

• Start from 30-dimensional non-physical phase-space with :
� A0 and λi (and N and N i) are Lagrange multipliers ;
� From Fµν −→ {Ei, Bi} and their momenta {πiE , πiB}, From Aµ −→ Âi and its momentum πi

(coming from λµν) ;
� 5 first class constraints : Hi, H0, G : vector, scalar and Gauss constraints ;
� 6 second class ;

Ci = Bi − εijk∂jÂk , πiB ≈ 0 (23)

� Therefore 7 degrees from freedom : 2 gravitons, 2 photons, 3 ghosts, if possible to invert[
παE
πµν

]
=
[

E αβ Dρσα

Dµνβ C µνρσ

][
Ėβ
Kρσ

]
+
[
Gα
Fµν

]
(24)

� In order to avoid ghosts, we need both degeneracy and further constraints.
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III/ Degenerate theories : Quasi-linear electrodynamics
• Consider flat Minskowski space in Cartesian coordinates so that

Ikin =
∫
d4xE ρσ (E,B) ĖρĖσ,

Ilin =
∫
d4x
(
G µαβ

1 (E,B) ∂αEβ + G µαβ
2 (E,B) ∂αBβ

)
Ėµ,

(25)

• Quasi-linear degenerate theories obtained when no second derivatives E αβ = 0. This condition yields five
theories :

LQL =
5∑
p=1

γpLp , (26)

where γp are U(1) functions and

L1 = Fµν(2)∇[γ|Fµ
γ∇|λ]Fν

λ , L2 = Fµν(2)∇[µ|Fνγ∇|λ]Fγ
λ ,

L3 = Fµν∇[µF
2∇γ]Fν

γ , L4 = Fµν(2)F
ρσ
(2)∇[ν|Fµρ∇|γ]Fρ

γ ,

L5 = P 2

16∇σFµν∇
µF νσ + F 2

8 Fµν∇µFνγ∇γF 2 − 2FµνF ρσ(3)∇σFνγ∇
γFµρ + Fµν(2)F

ρσ
(2)∇νFµρ∇γFρ

γ .

(27)
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III/ Degenerate theories : Third order non-minimal coupling interaction

• If we require E = 0 and D = 0, so that only terms quadratic in the extrinsic curvature appear in the kinetic
term, we obtain,

LGrav = aR+ b∗Fσρ
∗FµνRσρµν + cL , (28)

where a, b, c are coupling constants. The new term is given by

L = 1
4δ

µνρσ
αβγδR

αβ
µν

(
F γ2ρF

δ
2σ + F 2FρσF

γδ
)
− 2F 2Fµν2 Gµν − 2 (L1 − 2L2 + L3) , (29)

where the Li are given by Eq(27).
� Similar to the unique curvature invariant in 4D leading to third order equations of motion Lovelock (1969) ;

C = ∗Rµνρσ∗Rρσαβ
∗Rαβµν (30)

� However, similarly to R+ αC which propagates 2 gravitons plus 3 Ostrogradski ghosts, we expect L to
be unstable (Hamiltonian linear in momentum thus unbounded from below) Crisostomi et al(2018) ;
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IV/ Conclusion :

• We classified quadratic U(1)-vector-tensor theories in ∇F and U(1) non-minimal couplings linear in
curvature ;

• Some degenerate theories have been found (in particular quasi-linear in flat space), but there are hints they
still propagate Ostrogradski ghosts ;

• Can we obtain a classification of ghost-free theories like in DHOSTS ?
• If so, will the physically viable theories among them reduce to U(1)-preserving Disformal transformations of
I2sd [A, g] ?

• Remark that U(1) Disformal transformations of Einstein-Maxwell theory have been studied in Gumrukcuoglu,

Namba (2020), in Minamitsuji (2020) for disformed Kerr-Newman (breaks circularity condition), in Bittencourt (2023),
where exotic singularities have been found in disformed Maxwell ED ;

• Use the tools to obtain minimal basis of invariants to obtain/reduce effective action in QFT (in which lots of
redundancy enters) : possible interesting cancellations or computational efficiency or new truncations ?
What about gravitational actions ?
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Thank you for your attention !
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