Summ

Introductio

Classification of quadratic interactions 00

Degenerate theorie

Conclusion 00

Degenerate Einstein-Maxwell theories

Colléaux Aimeric

Astrophysics Research Center of the Open University (ARCO), Israel

 $9 \,\, {\rm November} \,\, 2023$

Work in progress, in collaboration with Karim Noui (IJCLab) and David Langlois (APC)

Astroparticle symposium 2023, Pascal Institute

ary	Introduction
	00000

Classification of quadratic interactions

Degenerate theorie

Conclusion 00

Introduction

Summa

Classification of quadratic interactions

Degenerate theories

Conclusion

I/ Introduction : Ghost-free U(1) vector-tensor interactions

• What are the most general interactions (in 4D) between gravity and electromagnetism

$$I[g_{\mu\nu}, A_{\mu}] = \int d^4x \sqrt{-g} \mathcal{L}[g_{\mu\nu}, \nabla_{\alpha}, R_{\mu\nu\sigma}{}^{\rho}, F_{\rho\sigma}], \qquad (1)$$

with the same degrees of freedom as the Einstein-Maxwell theory, i.e. massless photons and gravitons ?

□ Usually, higher order field equations generate new unstable degrees of freedom : Ostrogradski ghosts ;
 □ Unique U(1) vector-tensor theories admitting second order field equations, Horndeski (1976) :

$$I_{2sd}\left[g_{\mu\nu}, F_{\mu\nu}\right] = \int d^4x \sqrt{-g} \left(R - \mathcal{F}\left(F_{\mu\nu}F^{\mu\nu}, {}^*F_{\mu\nu}F^{\mu\nu}\right) + \gamma \,{}^*F_{\sigma\rho}\,{}^*F^{\mu\nu}R^{\sigma\rho}_{\mu\nu}\right),\tag{2}$$

where ${}^*F^{\rho\sigma} = \frac{1}{2} \varepsilon^{\mu\nu\rho\sigma} F_{\mu\nu}$ and $R^{\mu\nu}_{\sigma\rho} = g^{\gamma\mu} R_{\sigma\rho\gamma}^{\ \nu}$. Admits many exact non-singular solutions !

- For $\gamma = 0$, yields Non-Linear Electrodynamics : Born-Infeld, Conformal Electrodynamics Bandos et al (2020) ;
- For $\mathcal{F}(x,y) = \Lambda + \alpha x + \mu y^2$ Colléaux (2023) : Geodesically complete magnetic black string, strongly coupled non-singular Bianchi IX cosmology, non-singular electric z = 2 Lifshitz geometry.
- \Box Can we go further and consider $I[R_{\mu\nu\sigma}^{\rho}, F_{\mu\nu}, \nabla_{\sigma}F_{\mu\nu}]$?

I/ Framework for answering : A detour on DHOST

• In the case of scalar-tensor theories, $abla_{lpha}
abla_{eta} \phi$ already participates to Horndeski second order theories :

$$I_{\text{Horndeski}} = \int d^4x \sqrt{-g} \sum_{n=2}^{5} \mathcal{L}_n^{\text{H}} \qquad X = -\partial_\mu \phi \partial^\mu \phi$$
(3)

$$\mathcal{L}_{2}^{\mathsf{H}} := G_{2}(\phi, X) , \quad \mathcal{L}_{3}^{\mathsf{H}} := G_{3}(\phi, X) \Box \phi , \quad \mathcal{L}_{4}^{\mathsf{H}} := G_{4}(\phi, X) R + G_{4,X} \delta_{\mu\nu}^{\alpha\beta} \nabla^{\mu} \nabla_{\alpha} \phi \nabla^{\nu} \nabla_{\beta} \phi$$

$$\mathcal{L}_{5}^{\mathsf{H}} := G_{5}(\phi, X) G_{\nu}^{\mu} \nabla^{\nu} \nabla_{\mu} \phi - \frac{1}{6} G_{5,X} \delta_{\mu\nu\sigma}^{\alpha\beta\rho} \nabla^{\mu} \nabla_{\alpha} \phi \nabla^{\nu} \nabla_{\beta} \phi \nabla^{\sigma} \nabla_{\rho} \phi .$$
(4)

• However, degenerate higher order scalar-tensor theories (DHOST), propagating only a massless graviton and a scalar field exist :

$$I_{\text{quadratic}} = \int d^4 x \sqrt{-g} \left(f(\phi, X) R + C^{\mu\nu\rho\sigma} \left(g, \phi, \partial_\alpha \phi \right) \nabla_\mu \nabla_\nu \phi \nabla_\rho \nabla_\sigma \phi \right)$$
(5)

where C is the most general tensor built from $\partial_{\sigma}\phi$, providing that some degeneracy conditions (DC) on f and C hold ;

 \Box Roughly speaking, DC are satisfied if a factorization occurs after an ADM decomposition,

 $\mathcal{L}_{kin} = \mathcal{K}^{ijkl} K_{ij} K_{kl} + \mathcal{B}^{ij} \ddot{\phi} K_{ij} + \mathcal{A} \ddot{\phi}^2 + V \left(\dot{\phi} \right) = \mathcal{K}^{ijkl} \left(K_{ij} + \mathcal{E}_{ij} \ddot{\phi} \right) \left(K_{kl} + \mathcal{E}_{kl} \ddot{\phi} \right) + V \left(\dot{\phi} \right)$ (6) where $\{\mathcal{K}, \mathcal{B}, \mathcal{A}, \mathcal{E}\}$ come from $\{f, C\}$ and depend on $\phi, \dot{\phi}, \partial_i \phi$. Summa O

I/ Degenerate Einstein-Maxwell theories

• The generalization of quadratic DHOST for U(1) gauge symmetry is

$$I_{\text{quadratic}} = \int d^4x \sqrt{-g} \left(\mathcal{F}\left(F^2, {}^*FF\right) + \frac{1}{4} \mathscr{A}^{\mu\nu\rho\sigma} \left(F_{\alpha\beta}, g_{\gamma\delta}\right) R_{\mu\nu\rho\sigma} + \mathscr{B}^{\gamma\mu\nu,\delta\rho\sigma} \left(F_{\alpha\beta}, g_{\gamma\delta}\right) \nabla_{\gamma} F_{\mu\nu} \nabla_{\delta} F_{\rho\sigma} \right),$$

where \mathscr{A} and \mathscr{B} are the most general tensors built from $F_{\rho\sigma}$ with the corresponding symmetries. Thus, need to :

- \Box Classify \mathscr{A} and \mathscr{B} ;
- □ Perform an ADM decomposition of (7) and find the degeneracy conditions so that only massless photons and gravitons propagate ;
- □ Remark : The DC are partial differential equations between the free functions inside *A* and *B*. Thus, to avoid spurious solutions corresponding to generic boundary terms or 4D redundancies, need minimal basis for *A* and *B*;
- Proof of principle by U(1)-preserving disformal transformations Naruko, De Felice (2021) :

$$g_{\mu\nu} \longrightarrow \alpha \left(F^2, {}^*FF \right) g_{\mu\nu} + \beta \left(F^2, {}^*FF \right) F_{\mu}{}^{\sigma}F_{\sigma\nu} \tag{8}$$

If applied to $I_{2sd}\left[g_{\mu\nu},F_{\mu\nu}\right]$ and the transformation is invertible, the degrees of freedom are preserved ;

I/ Further motivations : Bopp-Podosky ED and effective QED actions

Bopp-Podolsky electrodynamics

$$I_{BP} = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{a^2}{2} \partial_\mu F^{\mu\nu} \partial^\rho F_{\rho\nu} \right)$$
(9)

Propagator (in Feynmann-t'Hooft gauge) :

$$P_{\mu\nu}(k) = \eta_{\mu\nu} \left(\frac{1}{k^2} - \frac{1}{k^2 - 1/a^2} \right)$$
(10)

- □ So one photon and one ghost-like "Pauli-Villars" massive photon (a Proca field) of mass $1/a^2$: 5 degrees of freedom
- \Box Non-singular modified Coulomb potential for specific boundary cdts : $V(r)=rac{q}{r}\left(1-e^{-r/a}
 ight)$
- QED one-loop effective actions
 - Non minimal coupling " RF^2 " and BP derivative term $\nabla F \nabla F$ in one (electron) loop corrections Drummond et al (1979);
 - \square Euler-Heisenberg non-perturbative one-loop effective action for QED in constant background EM field

$$L_{\rm eff} = \mathcal{F}\left(F_{\mu\nu}F^{\mu\nu}, {}^*F_{\mu\nu}F^{\mu\nu}\right) \tag{11}$$

Non-perturbative one-loop effective action for (spinor) QED in slowly varying EM field Gusynin et al (1999).

I/ Derivative Expansion of the Effective Action for spinor QED in 3+1

$$A_{(j)\mu\nu} = \frac{-\bar{f}_j^2 \eta_{\mu\nu} + f_j F_{\mu\nu} + F_{\mu\nu}^2 - i\bar{f}_j \ \check{F}_{\mu\nu}}{2(f_j^2 - \bar{f}_j^2)}, \qquad f_{1,2} = \pm iK_-, \quad f_{3,4} = \pm K_+; \\ \bar{f}_{1,2} = \mp K_+, \quad \bar{f}_{3,4} = \mp iK_-. \quad K_+ = \sqrt{\sqrt{\mathcal{F}^2 + \mathcal{G}^2} + \mathcal{F}}, \qquad K_- = \sqrt{\sqrt{\mathcal{F}^2 + \mathcal{G}^2} - \mathcal{F}}.$$

$$\mathcal{F} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu}, \qquad \mathcal{G} = \frac{1}{8} \epsilon^{\mu\nu\lambda\kappa} F_{\lambda\kappa} F_{\mu\nu}.$$

$$\begin{split} tr\langle x|U(\tau)|x\rangle &= tr\langle x|U(\tau)|x\rangle_{0} \\ \times \left[1 - \frac{i}{8}e^{F_{\nu\lambda,\mu\kappa}}\sum_{j,l} \left(C^{V}(f_{j},f_{l})\left(A_{(j)}^{\nu\lambda}A_{(l)}^{\mu\kappa} + 2A_{(j)}^{\nu\mu}A_{(l)}^{\lambda\kappa}\right) + 2C^{W}(f_{j},f_{l})A_{(j)}^{\lambda\nu}A_{(l)}^{\mu\kappa}\right) \\ - \frac{i}{18}e^{2}F_{\nu\lambda,\mu}F_{\sigma\kappa,\rho}\sum_{j,l,k} \left(9C_{1}^{WW}(f_{j},f_{l},f_{k})A_{(j)}^{\kappa\sigma}A_{(l)}^{\lambda\nu}A_{(k)}^{\mu\rho} + 9C_{2}^{WW}(f_{j},f_{l},f_{k})A_{(j)}^{\kappa\lambda}A_{(l)}^{\sigma\nu}A_{(k)}^{\mu\rho}A_{(k)}^{\lambda\rho}\right) \\ + 6C_{1}^{VW}(f_{j},f_{l},f_{k})A_{(j)}^{\sigma\kappa}\left(A_{(j)}^{\nu\lambda}A_{(k)}^{\mu\rho} + A_{(j)}^{\nu\mu}A_{(k)}^{\lambda\rho}\right) + 6C_{2}^{VW}(f_{j},f_{l},f_{k})A_{(j)}^{\sigma\kappa}A_{(k)}^{\nu\rho}A_{(k)}^{\lambda\mu}\right) \\ - C_{1}^{VV}(f_{j},f_{l},f_{k})\left(A_{(j)}^{\nu\lambda}A_{(k)}^{\kappa\sigma}A_{(k)}^{\mu\rho} + A_{(j)}^{\nu\mu}A_{(k)}^{\kappa\rho}A_{(k)}^{\lambda\sigma} + 2A_{(j)}^{\nu\lambda}A_{(l)}^{\kappa\rho}A_{(k)}^{\mu\sigma}\right) \\ - C_{2}^{VV}(f_{j},f_{l},f_{k})\left(A_{(j)}^{\nu\lambda}A_{(k)}^{\kappa\mu}A_{(k)}^{\sigma\rho} + A_{(j)}^{\kappa\rho}A_{(k)}^{\lambda\sigma}A_{(k)}^{\lambda\rho} - C_{4}^{VV}(f_{j},f_{l},f_{k})A_{(j)}^{\nu\kappa}A_{(l)}^{\lambda\mu}A_{(k)}^{\alpha\rho}\right) \\ - 2C_{3}^{VV}(f_{j},f_{l},f_{k})\left(A_{(j)}^{\nu\lambda}A_{(k)}^{\mu\mu}A_{(k)}^{\sigma\rho} + A_{(j)}^{\kappa\rho}A_{(k)}^{\mu\sigma}A_{(k)}^{\lambda\mu}\right) - C_{4}^{VV}(f_{j},f_{l},f_{k})A_{(j)}^{\nu\kappa}A_{(l)}^{\lambda\mu}A_{(k)}^{\alpha\rho} \\ - C_{5}^{VV}(f_{j},f_{l},f_{k})A_{(j)}^{\nu\kappa}\left(A_{(j)}^{\lambda\sigma}A_{(k)}^{\mu\rho} + A_{(j)}^{\lambda\rho}A_{(k)}^{\mu\sigma}A_{(k)}^{\lambda\mu}\right) - C_{4}^{VV}(f_{j},f_{l},f_{k})A_{(j)}^{\nu\kappa}A_{(l)}^{\lambda\mu}A_{(k)}^{\alpha\rho} + A_{(j)}^{\lambda\rho}A_{(k)}^{\mu\sigma}A_{(k)}^{\lambda\mu}\right) \\ - C_{5}^{VV}(f_{j},f_{l},f_{k})A_{(j)}^{\nu\kappa}\left(A_{(j)}^{\lambda\sigma}A_{(k)}^{\mu\rho} + A_{(j)}^{\lambda\rho}A_{(k)}^{\mu\sigma}A_{(k)}^{\lambda\mu}\right) - C_{4}^{VV}(f_{j},f_{l},f_{k})A_{(j)}^{\nu\kappa}A_{(l)}^{\lambda\mu}A_{(k)}^{\mu\rho}\right) \right], \end{split}$$

Classification of quadratic interactions • 0

II/ Classification of quadratic interactions

- $\mathscr{A}^{\mu\nu\rho\sigma}$ and $\mathscr{B}^{\gamma\mu\nu,\delta\rho\sigma}$ are constructed from (Cayley-Hamilton theorem in 4D) :
 - $\hfill\square$ 2 functions $\{F^2, {}^*\!FF\}$ or equivalently $\{F^2, F^4\}$;
 - \Box 2 symmetric matrices $\{g_{\mu\nu}, F_{\mu}{}^{\alpha}F_{\alpha\nu}\}$, and 2 antisymmetric ones $\{F_{\mu\nu}, F_{\mu}{}^{\alpha}F_{\alpha\beta}F^{\beta}{}_{\nu}\}$;
 - $\hfill\square$ Using Levi-Civita tensor is redundant ;

Define

$$F_I^{\mu\nu} \equiv \{g^{\mu\nu}, F^{\mu\nu}, F^{\mu\alpha}F_{\alpha}{}^{\nu}, F^{\mu\alpha}F_{\alpha\beta}F^{\beta\nu}\}$$
(12)

• Classification of $\mathscr{B}^{\gamma\mu\nu,\delta\rho\sigma}(F_I...F_K)\nabla_{\gamma}F_{\mu\nu}\nabla_{\delta}F_{\rho\sigma}$

- $\Box \text{ Fully dressed vertices}: 2 \text{ vectors } u^{\mu}_{(1,2)IJ} \equiv (F_I F_J \nabla F)^{\mu}_{1,2}, 1 \text{ tensor } t^{\mu\nu\sigma}_{IJK} \equiv F_I^{\mu\bar{\mu}} F_J^{\nu\bar{\nu}} F_K^{\sigma\bar{\sigma}} \nabla_{\bar{\mu}} F_{\bar{\nu}\bar{\sigma}};$
- \Box Thus 5 family of scalars : $\{u_1u_1, u_2u_2, u_1u_2, tt_1, tt_2\}$ and 124 of them in total ;

$$\mathscr{B}^{\gamma\mu\nu,\delta\rho\sigma}\left(F_{\alpha\beta},g_{\gamma\delta}\right)\nabla_{\gamma}F_{\mu\nu}\nabla_{\delta}F_{\rho\sigma} = \sum_{i=1}^{124}\alpha_{i}S_{i} \tag{13}$$

 \Box Need to use Bianchi identity $\nabla_{[\mu}F_{\nu\sigma]} = 0$: 70

□ Need to use DDIs (dimensionally dependant identities) : 88 for instance

$$\mathscr{D}_{IJK,AB} \equiv F_{Ib_1}^{[a_1} F_{Jb_2}^{a_2} F_{Kb_3}^{a_3} F_{Aa_4}^{a_4} F_{Ba_5}^{a_5]} (\nabla F \nabla F)_{[a_1 a_2 a_3]}^{b_1 b_2 b_3} = 0$$

$$\mathscr{D}_{IJK,ABC} \equiv F_{Ii}^{j} F_{Jb_1}^{[a_1} F_{Kb_2}^{a_2} F_{Aa_3}^{a_3} F_{Ba_4}^{a_4} F_{Ca_5}^{a_5]} (\nabla F \nabla F)_{[a_1 a_2]j}^{b_1 b_2 i} = 0$$

$$(14)$$

Introdu 00000 Classification of quadratic interactions $_{\odot \bullet}$

Degenerate theories

Conclusion 00

II/ Classification of quadratic interactions

• Considering boundary terms as well (complicated) we found that $\mathscr A$ and $\mathscr B$ can be reduced to :

$$\mathscr{A}^{\mu\nu\rho\sigma} = \beta_1 g^{\mu\rho} g^{\nu\sigma} + \beta_2 F^{\mu\nu} F^{\rho\sigma} + \beta_3 F^{\mu\rho}_{(2)} g^{\nu\sigma} + \beta_4 F^{\mu\rho}_{(2)} F^{\nu\sigma}_{(2)}, \tag{15}$$

and

$$\mathscr{B}^{\gamma\mu\nu,\delta\rho\sigma} = \alpha_{1}g^{\gamma\sigma}g^{\nu\delta}g^{\rho\mu} + \alpha_{2}F^{\rho\mu}_{(2)}g^{\gamma\nu}g^{\delta\sigma} + \alpha_{3}F^{\delta\rho}_{(2)}g^{\gamma\nu}g^{\sigma\mu} + \alpha_{4}F^{\delta\mu}_{(2)}g^{\gamma\sigma}g^{\nu\rho} + \alpha_{5}F^{\rho\mu}_{(2)}g^{\gamma\sigma}g^{\nu\delta} + \alpha_{6}F^{\delta\mu}F^{\rho\sigma}g^{\gamma\nu} - \alpha_{7}F^{\mu\nu}F^{\delta\rho}g^{\gamma\sigma} + \alpha_{8}F^{\delta\rho}_{(2)}F^{\sigma\mu}_{(2)}g^{\gamma\nu} + \alpha_{9}F^{\gamma\rho}_{(2)}F^{\mu\delta}_{(2)}g^{\nu\sigma} + \alpha_{10}F^{\nu\delta}_{(2)}F^{\mu\rho}_{(2)}g^{\gamma\sigma} + \alpha_{11}F^{\gamma\rho}F^{\mu\nu}F^{\delta\sigma}_{(2)} - \alpha_{12}F^{\rho\mu}F^{\nu\delta}_{(3)}g^{\gamma\sigma} + \alpha_{13}F^{\gamma\sigma}_{(2)}F^{\nu\delta}_{(2)}F^{\rho\mu}_{(2)} + \alpha_{14}F^{\rho\sigma}F^{\delta\mu}_{(2)}g^{\gamma\nu} + \alpha_{15}F^{\delta\mu}_{(2)}F^{\gamma\rho}_{(3)}g^{\nu\sigma}.$$
(16)

All the coefficients α, β, γ are functions of the two electromagnetic invariants available in four dimensions

III/ Degenerate theories : Lagrangian decompositions

Recall the action

$$I\left[g_{\mu\nu}, F_{\mu\nu}\left(A_{\mu}\right)\right] = \int d^{4}x \sqrt{-g} \left(\frac{1}{4}\mathscr{A}^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma} + \mathscr{B}^{\gamma\mu\nu,\delta\rho\sigma}\nabla_{\gamma}F_{\mu\nu}\nabla_{\delta}F_{\rho\sigma}\right),\tag{17}$$

• Similarly to DHOSTs, introduce equivalent action :

$$I_{\text{eq}}[g_{\mu\nu}, F_{\mu\nu}, \lambda_{\mu\nu}, A_{\mu}] = I[g_{\mu\nu}, F_{\mu\nu}] + \int d^4x \sqrt{-g} \lambda^{\mu\nu} \left(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - F_{\mu\nu}\right),$$
(18)

Due to U(1) gauge symmetry, there is no time derivative of the magnetic part of the two-form $F_{\mu
u}$

$$\nabla_{\sigma} F_{\mu\nu} = \lambda^{\rho}_{\sigma\mu\nu} \dot{E}_{\rho} + \Lambda^{\alpha\beta}_{\sigma\mu\nu} K_{\alpha\beta} + (\dots) a + (\dots) DE + (\dots) DB$$
⁽¹⁹⁾

where D is the spatial covariant derivative, the time derivative of the electric field is encoded into the following spatial quantity

$$\dot{E}_{\mu} \equiv n^{\sigma} \nabla_{\sigma} E_{\mu} + n_{\mu} a^{\sigma} E_{\sigma}, \tag{20}$$

After IBP

$$I_{\rm kin} = \int d^4x \sqrt{-g} \left(\mathscr{C}^{\mu\nu\rho\sigma} K_{\mu\nu} K_{\rho\sigma} + 2\mathscr{D}^{\mu\nu\sigma} K_{\mu\nu} \dot{E}_{\sigma} + \mathscr{C}^{\rho\sigma} \dot{E}_{\rho} \dot{E}_{\sigma} \right),$$

$$I_{\rm lin} = \int d^4x \sqrt{-g} \left(\mathscr{F}^{\mu\nu} K_{\mu\nu} + \mathscr{G}^{\mu} \dot{E}_{\mu} \right),$$

$$(21)$$

III/ Degenerate theories : Constraints and degrees of freedom

• Decomposition of $A_{\mu} = -A_0 n_{\mu} + \hat{A}_{\mu}$ and $\lambda_{\mu\nu} = \varepsilon_{\mu\nu\sigma} \lambda^{\sigma} - n_{[\mu} \pi_{\nu]}$

$$\int d^4x \sqrt{-g} \lambda^{\mu\nu} \left(\partial_\mu A_\nu - \partial_\nu A_\mu - F_{\mu\nu}\right) = \int d^4x \sqrt{-g} \left(\pi^\mu \partial_t \hat{A}_\mu + A_0 G + \lambda^\mu C_\mu - \pi_\mu E^\mu\right)$$
(22)

- Start from 30-dimensional non-physical phase-space with :
 - $\hfill\square\hfill\hf$
 - $\Box \text{ From } F_{\mu\nu} \longrightarrow \{E^i, B^i\} \text{ and their momenta } \{\pi^i_E, \pi^i_B\}, \text{ From } A_\mu \longrightarrow \hat{A}_i \text{ and its momentum } \pi^i \text{ (coming from } \lambda_{\mu\nu});$
 - \Box 5 first class constraints : H_i , H_0 , G : vector, scalar and Gauss constraints ;
 - \Box 6 second class ;

$$C_i = B_i - \epsilon_{ijk} \partial^j \hat{A}^k , \quad \pi_B^i \approx 0$$
⁽²³⁾

□ Therefore 7 degrees from freedom : 2 gravitons, 2 photons, 3 ghosts, if possible to invert

$$\begin{bmatrix} \pi_E^{\alpha} \\ \pi^{\mu\nu} \end{bmatrix} = \begin{bmatrix} \mathscr{E}^{\alpha\beta} & \mathscr{D}^{\rho\sigma\alpha} \\ \mathscr{D}^{\mu\nu\beta} & \mathscr{E}^{\mu\nu\rho\sigma} \end{bmatrix} \begin{bmatrix} \dot{E}_{\beta} \\ K_{\rho\sigma} \end{bmatrix} + \begin{bmatrix} \mathcal{G}^{\alpha} \\ \mathcal{F}^{\mu\nu} \end{bmatrix}$$
(24)

□ In order to avoid ghosts, we need both degeneracy and further constraints.

III/ Degenerate theories : Quasi-linear electrodynamics

• Consider flat Minskowski space in Cartesian coordinates so that

$$I_{kin} = \int d^4 x \mathscr{E}^{\rho\sigma} (E, B) \dot{E}_{\rho} \dot{E}_{\sigma},$$

$$I_{lin} = \int d^4 x \left(\mathscr{G}_1^{\mu\alpha\beta} (E, B) \partial_{\alpha} E_{\beta} + \mathscr{G}_2^{\mu\alpha\beta} (E, B) \partial_{\alpha} B_{\beta} \right) \dot{E}_{\mu},$$
(25)

Quasi-linear degenerate theories obtained when no second derivatives ε^{αβ} = 0. This condition yields five theories :

$$\mathscr{L}_{\mathsf{QL}} = \sum_{p=1}^{5} \gamma_p \mathscr{L}_p \,, \tag{26}$$

where γ_p are U(1) functions and

$$\mathcal{L}_{1} = F_{(2)}^{\mu\nu} \nabla_{[\gamma]} F_{\mu}^{\gamma} \nabla_{[\lambda]} F_{\nu}^{\lambda}, \qquad \mathcal{L}_{2} = F_{(2)}^{\mu\nu} \nabla_{[\mu]} F_{\nu\gamma} \nabla_{[\lambda]} F_{\gamma}^{\lambda},
\mathcal{L}_{3} = F^{\mu\nu} \nabla_{[\mu} F^{2} \nabla_{\gamma]} F_{\nu}^{\gamma}, \qquad \mathcal{L}_{4} = F_{(2)}^{\mu\nu} F_{(2)}^{\rho\sigma} \nabla_{[\nu]} F_{\mu\rho} \nabla_{[\gamma]} F_{\rho}^{\gamma}, \qquad (27)$$

$$\mathcal{L}_{5} = \frac{P^{2}}{16} \nabla_{\sigma} F_{\mu\nu} \nabla^{\mu} F^{\nu\sigma} + \frac{F^{2}}{8} F^{\mu\nu} \nabla_{\mu} F_{\nu\gamma} \nabla^{\gamma} F^{2} - 2F^{\mu\nu} F_{(3)}^{\rho\sigma} \nabla_{\sigma} F_{\nu\gamma} \nabla^{\gamma} F_{\mu\rho} + F_{(2)}^{\mu\nu} F_{(2)}^{\rho\sigma} \nabla_{\nu} F_{\mu\rho} \nabla_{\gamma} F_{\rho}^{\gamma}.$$

III/ Degenerate theories : Third order non-minimal coupling interaction

• If we require $\mathscr{E} = 0$ and $\mathscr{D} = 0$, so that only terms quadratic in the extrinsic curvature appear in the kinetic term, we obtain,

$$\mathscr{L}_{\mathsf{Grav}} = aR + b^* F_{\sigma\rho}{}^* F^{\mu\nu} R^{\sigma\rho}_{\mu\nu} + c \mathcal{L} \,, \tag{28}$$

where a, b, c are coupling constants. The new term is given by

$$\mathcal{L} = \frac{1}{4} \delta^{\mu\nu\rho\sigma}_{\alpha\beta\gamma\delta} R^{\alpha\beta}_{\mu\nu} \left(F^{\gamma}_{2\rho} F^{\delta}_{2\sigma} + F^2 F_{\rho\sigma} F^{\gamma\delta} \right) - 2F^2 F^{\mu\nu}_2 G_{\mu\nu} - 2\left(\mathscr{L}_1 - 2\mathscr{L}_2 + \mathscr{L}_3\right), \tag{29}$$

where the \mathscr{L}_i are given by Eq(27).

 \supset Similar to the unique curvature invariant in 4D leading to third order equations of motion Lovelock (1969) ;

$$C = {}^{*}R^{\mu\nu}_{\rho\sigma} {}^{*}R^{\alpha\beta}_{\alpha\beta} {}^{*}R^{\alpha\beta}_{\mu\nu}$$
(30)

 \Box However, similarly to $R + \alpha C$ which propagates 2 gravitons plus 3 Ostrogradski ghosts, we expect \mathcal{L} to be unstable (Hamiltonian linear in momentum thus unbounded from below) Crisostomi et al(2018) ;

Classification of quadratic interactions $\circ\circ$

Degenerate theorie

Conclusion • O

IV/ Conclusion :

- We classified quadratic U(1)-vector-tensor theories in ∇F and U(1) non-minimal couplings linear in curvature ;
- Some degenerate theories have been found (in particular quasi-linear in flat space), but there are hints they still propagate Ostrogradski ghosts ;
- Can we obtain a classification of ghost-free theories like in DHOSTS ?
- If so, will the physically viable theories among them reduce to U(1)-preserving Disformal transformations of $I_{2sd} [A,g]$?
- Remark that U(1) Disformal transformations of Einstein-Maxwell theory have been studied in Gumrukcuoglu, Namba (2020), in Minamitsuji (2020) for disformed Kerr-Newman (breaks circularity condition), in Bittencourt (2023), where exotic singularities have been found in disformed Maxwell ED ;
- Use the tools to obtain minimal basis of invariants to obtain/reduce effective action in QFT (in which lots of redundancy enters) : possible interesting cancellations or computational efficiency or new truncations ? What about gravitational actions ?

Summa

Introducti 00000 Classification of quadratic interactions

Degenerate theories

Conclusion

Thank you for your attention !

・ロト・(四ト・(川下・(日下・(日下)))