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The model

Theory of gravity

S (g, ϕ) =

∫ [
ξ (R − 2Λ)− η (∂ϕ)2 + γ′ (∂ϕ)2 □ϕ

]√
−gdx4.

Restriction to Λ = 0 and η = 0

S (g, ϕ) =

∫ [
R + γ (∂ϕ)2 □ϕ

]√
−gdx4.

Field ansatz

ϕ = qt +Ψ

� the action contains only derivatives of ϕ.

� the geometry is time-independent.

� q is a parameter of the solutions.
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Black hole solutions

� The time-dependence in ϕ enables to evade the uniqueness theorem.

� Exact non-rotating black hole solutions can be found.

� Schwarzschild or isotropic coordinates.
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Quasi-isotropic coordinates

� Rotating solutions were constructed using quasi-isotropic

coordinates:

gµν =


gtt 0 0 gtφ
0 A2 0 0

0 0 A2r2 0

gtφ 0 0 B2r2 sin2 θ


� Only a subset of Einstein’s equation components is solved.

� A valid choice iff the spacetime is circular (link to a generalized

Papapetrou theorem).
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Circularity condition is not verified.

The component (t, r) of Einstein’s equation is not verified when rotation

is included.
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One needs to move away from quasi-circular coordinates and use more

general ones.
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3+1 formalism

Foliation of spacetime gives rise to the standard 3+1 metric :

ds2 = −
(
N2 − BiB

i
)
dt2 + 2Bidx

idt + γijdx
idx j

The lapse N, the shift B i and spatial metric γij are the unknowns.

Definition : the second fundamental form is the extrinsic curvature tensor

Kij (first derivative of γij).

The equations are the projections of Einstein’s equations:

� the Hamiltonian constraint H = 0

� the momentum constraints M i = 0

� the evolution equations Eij = 0
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Field contribution

� Tµν = γ
[
∂(µϕ∂µ)∂ϕ

2 −□ϕ∂µϕ∂νϕ− 1
2gµν∂

ρϕ∂ρ∂ϕ
2
]

contains only derivative of Ψ (ϕ = qt +Ψ).

� The same is true for the 3+1 projections E , P i and Sij .

� Given axisymmetry, one can work with Ψr = ∂rΨ and Ψθ = 1/r∂θ Ψ

so that

DiΨ = (Ψr ,Ψθ, 0) .

� One equation comes variation of the action wrt ϕ (see later...).

� The other one is ∂r (rΨθ) = ∂θΨr .
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Gauge choice

Stationarity =⇒ ∂t = 0.

Einstein equations are not all independent, need to enforce gauge

conditions (i.e. choice of coordinates).

� maximal slicing K = 0.

� spatial harmonic gauge V i = γkl
(
Γikl − Γ̄ikl

)
= 0.

8



Enforcing the gauge

In the 3+1 equations

� Remove all the occurrences of K and V i in the equations.

� It gives a well-posed system of equations.

� Check, a posteriori, that K = 0 and V i = 0.

With the spatial harmonic gauge, Rij = −1

2
γkl D̄kD̄lγij + first order

(analogous of Lorenz gauge in gravitational waves).
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Black hole as an apparent horizon

Definition

� One demands that it is a sphere.

� The normal to the sphere is s̃ (such that s̃i s̃
i = 1).

� The expansion must vanish : Θ = Di s̃
i + s̃ i s̃ jKij = 0.

Additional conditions

� The horizon does not move : s̃iB
i = N

� The horizon has no shear : B i
∥ = Ω(∂φ)

i

� Ω encodes the rotation state of the black hole.

� It can be rewritten : B i = Ns̃ i +Ω(∂φ)
i
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Choice of time

� Consider a change of time coordinate t ′ = t + α
(
x i
)
.

� The condition K = 0 leads to a second order equation on α.

� The coordinate change is defined up to boundary conditions.

� This implies that one can choose freely the lapse on the horizon.

� A simple choice is N = Nconst (for instance 0.5)
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Choice of spatial coordinates

� Consider a change of time coordinate x ′i = x i + ξ
(
x i
)
.

� The condition V i = 0 leads to a second order equation on ξ.

� The coordinate change is defined up to boundary conditions.

� It seems that it leads to three freely specifiable components.

� However the location of the horizon is fixed =⇒ one must have

ξr = 0.

� This implies that one can choose freely two components of γ on the

horizon.

� A simple choice γrθ = 0 and γrφ = 0.
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Degenerate equations

Example in 1D

� Consider the equation a (r) f ′′ + b (r) f ′ + c (r) = 0.

� a (r) = 0 at the inner boundary.

� One can not impose any boundary condition on f at the inner

boundary.

� The equation is its own boundary condition : b (r) f ′ + c (r) = 0.
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Application to the 3+1 system

� One looks at the terms involving ∂2
r for all the unknown fields, in all

the equations.

� Some terms are multiplied by
(
N2 − BiB

i
)
which vanishes on the

horizon (see Eq. for B i ).

� A detailed analysis of the coupled system must be done.

� One can show that three equations are degenerate : the angular

components of the evolution equation.

� Eθθ, Eθφ and Eφφ do not require boundary conditions.
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Final complication

� The spherical part of the condition Θ = 0 is automatically verified if

the gauge conditions are fulfilled.

� It follows that the spherical part of another field can be freely specify.

� The Y 0
0 part of γrr is freely chosen.
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Boundary conditions on the metric quantities

� N = Nconst (time coordinate freedom).

� γrθ = 0 and γrφ = 0 (spatial gauge freedom).

� γrr = gconst for l = m = 0 and Θ = 0 otherwise.

� B i = Ns̃ i +Ω(∂φ)
i (horizon at fixed location, with no shear).

� Eθθ = 0, Eθφ = 0 and Eφφ = 0 (degenerate equations).
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Field equation

� The field equation is a conservation equation ∇µJ
µ = 0 with

Jµ = γ

[
∂µϕ+

1

2
∂µ (∂ϕ)

2

]
.

� In terms of Ψr and Ψθ, the equation is of second order.

� It is degenerate on the horizon : only one boundary condition.

Naive choice

� Enforce Ψr = 0 at infinity.

� Leads to non-valid solutions (i.e. with K ̸= 0 and V i ̸= 0).

Valid choice

� Enforce V r = 0 on the horizon.

� Different from other hairy black holes (different order ?).

� The compatibility conditions is solved with Ψθ = 0 at infinity.
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Numerics

� The equations are solved by means of the Kadath library

https://kadath.obspm.fr/

� Enables the use of spectral methods in the context of GR and

theoretical physics.

� Features : orthonormal spherical basis, multi-domain ,

compactification, Newton-Raphson iteration, parallel.
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Convergence of the errors

First fully consistent numerical rotating black hole solutions in this theory.
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Zeroth law of BH thermodynamics

One can check that E = Tµνn
µnν < 0 so that the weak energy condition

does not hold. There is no reason why the solutions should obey the

zeroth law.
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Vanishing ADM mass

The dominant energy condition does not hold so the positive energy

theorem does not apply.
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Summary

� Application of a formalism with maximal slicing and spatial

harmonic gauge.

� Apparent horizon in equilibrium.

� First fully consistent rotating solutions.

� Violation of the zeroth law of BH thermodynamics.
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