Fully consistent rotating black holes in the cubic Galileon theory

Philippe Grandclément

November 9th 2023

Laboratoire de l'Univers et Théories (LUTh) CNRS / Observatoire de Paris F-92195 Meudon, France

philippe.grandclement@obspm.fr

The model

Theory of gravity

$$S(\mathbf{g}, \phi) = \int \left[\xi \left(R - 2\Lambda \right) - \eta \left(\partial \phi \right)^2 + \gamma' \left(\partial \phi \right)^2 \Box \phi \right] \sqrt{-g} \mathrm{d}x^4.$$

Restriction to
$$\Lambda = 0$$
 and $\eta = \mathbf{0}$
 $S(\mathbf{g}, \phi) = \int \left[R + \gamma \left(\partial \phi \right)^2 \Box \phi \right] \sqrt{-g} \mathrm{d}x^4.$

Field ansatz

$$\phi = qt + \Psi$$

- the action contains only derivatives of ϕ .
- the geometry is time-independent.
- q is a parameter of the solutions.

Black hole solutions

- The time-dependence in ϕ enables to evade the uniqueness theorem.
- Exact non-rotating black hole solutions can be found.
- Schwarzschild or isotropic coordinates.

• Rotating solutions were constructed using quasi-isotropic coordinates:

$$g_{\mu\nu} = \begin{pmatrix} g_{tt} & 0 & 0 & g_{t\varphi} \\ 0 & A^2 & 0 & 0 \\ 0 & 0 & A^2 r^2 & 0 \\ g_{t\varphi} & 0 & 0 & B^2 r^2 \sin^2 \theta \end{pmatrix}$$

- Only a subset of Einstein's equation components is solved.
- A valid choice iff the spacetime is circular (link to a generalized Papapetrou theorem).

Circularity condition is not verified.

The component (t, r) of Einstein's equation is not verified when rotation is included.

One needs to move away from quasi-circular coordinates and use more general ones.

Foliation of spacetime gives rise to the standard 3+1 metric :

$$\mathrm{d}s^{2} = -\left(N^{2} - B_{i}B^{i}\right)\mathrm{d}t^{2} + 2B_{i}\mathrm{d}x^{i}\mathrm{d}t + \gamma_{ij}\mathrm{d}x^{i}\mathrm{d}x^{j}$$

The lapse *N*, the shift B^i and spatial metric γ_{ij} are the unknowns.

Definition : the second fundamental form is the extrinsic curvature tensor K_{ij} (first derivative of γ_{ij}).

The equations are the projections of Einstein's equations:

- the Hamiltonian constraint H = 0
- the momentum constraints $M^i = 0$
- the evolution equations $E_{ij} = 0$

- $T_{\mu\nu} = \gamma \left[\partial_{(\mu} \phi \partial_{\mu)} \partial \phi^2 \Box \phi \partial_{\mu} \phi \partial_{\nu} \phi \frac{1}{2} g_{\mu\nu} \partial^{\rho} \phi \partial_{\rho} \partial \phi^2 \right]$ contains only derivative of $\Psi (\phi = qt + \Psi)$.
- The same is true for the 3+1 projections E, P^i and S_{ij} .
- Given axisymmetry, one can work with $\Psi_r = \partial_r \Psi$ and $\Psi_\theta = 1/r \partial_\theta \Psi$ so that

$$D_i\Psi = (\Psi_r, \Psi_\theta, 0).$$

- One equation comes variation of the action wrt ϕ (see later...).
- The other one is $\partial_r (r \Psi_{\theta}) = \partial_{\theta} \Psi_r$.

Stationarity $\Longrightarrow \partial_t = 0$.

Einstein equations are not all independent, need to enforce gauge conditions (i.e. choice of coordinates).

- maximal slicing K = 0.
- spatial harmonic gauge $V^{i} = \gamma^{kl} \left(\Gamma^{i}_{kl} \overline{\Gamma}^{i}_{kl} \right) = 0.$

In the 3+1 equations

- Remove all the occurrences of K and V^i in the equations.
- It gives a well-posed system of equations.
- Check, a posteriori, that K = 0 and $V^i = 0$.

With the spatial harmonic gauge, $R_{ij} = -\frac{1}{2}\gamma^{kl}\bar{D}_k\bar{D}_l\gamma_{ij}$ + first order (analogous of Lorenz gauge in gravitational waves).

Definition

- One demands that it is a sphere.
- The normal to the sphere is \tilde{s} (such that $\tilde{s}_i \tilde{s}^i = 1$).
- The expansion must vanish : $\Theta = D_i \tilde{s}^i + \tilde{s}^i \tilde{s}^j K_{ij} = 0.$

Additional conditions

- The horizon does not move : $\tilde{s}_i B^i = N$
- The horizon has no shear : $B^i_{\parallel} = \Omega \left(\partial_{arphi}
 ight)^i$
- Ω encodes the rotation state of the black hole.
- It can be rewritten : $B^{i} = N \tilde{s}^{i} + \Omega \left(\partial_{\varphi}
 ight)^{i}$

- Consider a change of time coordinate $t' = t + \alpha (x^i)$.
- The condition K = 0 leads to a second order equation on α .
- The coordinate change is defined up to boundary conditions.
- This implies that one can choose freely the lapse on the horizon.
- A simple choice is $N = N_{\text{const}}$ (for instance 0.5)

- Consider a change of time coordinate $x'^i = x^i + \xi(x^i)$.
- The condition $V^i = 0$ leads to a second order equation on ξ .
- The coordinate change is defined up to boundary conditions.
- It seems that it leads to three freely specifiable components.
- However the location of the horizon is fixed \Longrightarrow one must have $\xi^r = 0.$
- This implies that one can choose freely two components of γ on the horizon.
- A simple choice $\gamma_{r\theta} = 0$ and $\gamma_{r\varphi} = 0$.

Example in 1D

- Consider the equation a(r) f'' + b(r) f' + c(r) = 0.
- a(r) = 0 at the inner boundary.
- One can not impose any boundary condition on *f* at the inner boundary.
- The equation is its own boundary condition : b(r) f' + c(r) = 0.

- One looks at the terms involving ∂_r^2 for all the unknown fields, in all the equations.
- Some terms are multiplied by (N² B_iBⁱ) which vanishes on the horizon (see Eq. for Bⁱ).
- A detailed analysis of the coupled system must be done.
- One can show that three equations are degenerate : the angular components of the evolution equation.
- $E_{\theta\theta}$, $E_{\theta\varphi}$ and $E_{\varphi\varphi}$ do not require boundary conditions.

- The spherical part of the condition $\Theta = 0$ is automatically verified if the gauge conditions are fulfilled.
- It follows that the spherical part of another field can be freely specify.
- The Y_0^0 part of γ_{rr} is freely chosen.

- $N = N_{\text{const}}$ (time coordinate freedom).
- $\gamma_{r\theta} = 0$ and $\gamma_{r\varphi} = 0$ (spatial gauge freedom).
- $\gamma_{rr} = g_{const}$ for l = m = 0 and $\Theta = 0$ otherwise.
- $B^{i} = N\tilde{s}^{i} + \Omega \left(\partial_{\varphi}\right)^{i}$ (horizon at fixed location, with no shear).
- $E_{\theta\theta} = 0$, $E_{\theta\varphi} = 0$ and $E_{\varphi\varphi} = 0$ (degenerate equations).

Field equation

• The field equation is a conservation equation $abla_\mu J^\mu = 0$ with

$$J_{\mu} = \gamma \left[\partial_{\mu} \phi + rac{1}{2} \partial_{\mu} \left(\partial \phi
ight)^2
ight].$$

- In terms of Ψ_r and Ψ_{θ} , the equation is of second order.
- It is degenerate on the horizon : only one boundary condition.

Naive choice

- Enforce $\Psi_r = 0$ at infinity.
- Leads to non-valid solutions (i.e. with $K \neq 0$ and $V^i \neq 0$).

Valid choice

- Enforce $V^r = 0$ on the horizon.
- Different from other hairy black holes (different order ?).
- The compatibility conditions is solved with $\Psi_\theta=0$ at infinity.

Numerics

- The equations are solved by means of the Kadath library https://kadath.obspm.fr/
- Enables the use of spectral methods in the context of GR and theoretical physics.
- Features : orthonormal spherical basis, multi-domain , compactification, Newton-Raphson iteration, parallel.

Home	KADATH SPECTRAL SOLVER
Things needed Installing Kodeth Generating concutables Reference Manual Publications using Kodeth Contributors	Roldh is a libray that injudentitis spectral methods in the context of theoretical physics. The libray is they pointed level a sequenced version can be installed (chowd be reflect solve for real posteres). Roldh is a free settinear water the <u>GRU Scorest Dialk Licrose</u>
ONU OPL	A detailed presentation of the tool can be found in : <u>1. Comput. Phys.</u> 229.3334 (2010)
Deprecated version Prankfurt Witki Data Tutorials +	The name of the littery is indexect to Will Lowershi's individual guider of the Great Creat. "Insertion of the littery intermediate particular control for the provide state of the Great Creat. "Insertion of the littery intermediate particular control for the provide state of the control for the control for the control for the provide the distance of the Great Creat. The provider of the great endowerships of the opposition of state Creat Creat. State Creat
	Rist Chebydian polynomials Scalar field of a robating boson star Geores in AADS spacetimes Binary block holes
	First Chebyshev polynomials

Convergence of the errors

 $\gamma = 0.01$

First fully consistent numerical rotating black hole solutions in this theory.

Zeroth law of BH thermodynamics

One can check that $E = T_{\mu\nu}n^{\mu}n^{\nu} < 0$ so that the weak energy condition does not hold. There is no reason why the solutions should obey the zeroth law.

Vanishing ADM mass

The dominant energy condition does not hold so the positive energy theorem does not apply.

- Application of a formalism with maximal slicing and spatial harmonic gauge.
- Apparent horizon in equilibrium.
- First fully consistent rotating solutions.
- Violation of the zeroth law of BH thermodynamics.

References

- First numerical solutions : K. Van Aelst *et al.*, Class. Quant. Grav., 37, 035007 (2020).
- Formalism : P. Grandclément *et al.*, Phys. Rev. D, 105, 104011 (2022).
- New solutions : P. Grandclément, arXiv:2308.11245.