EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

This project has received funding from the European Union's Horizor Europe research and innovation programme under grant agreement No. 101079773

The EuPRAXIA Preparatory Phase Project

Arnd Specka, Laboratoire Leprince-Ringuet Ecole Polytechnique – CNRS/IN2P3

AG du GDR APPEL 13-15 Dec 2023 Orme des Merisiers, France

Based on slides by (AND thanks to): Ralph Assmann, Massimo Ferrario, Alessio Del Dotto, Alessandro Cianchi, Rajeev Pattathil, Alexander Molodozhentsev,...

The EuPRAXIA Project

• 1st ever design of a **plasma accelerator facility**. 1st **ESFRI** plasma acc. project. 1st ESFRI acc. project since 2016.

- Conceptual Design Report for a distributed research infrastructure funded by EU Horizon2020 program. Completed by 16+25 institutes.
- Challenges addressed by EuPRAXIA since 2015:
 - Can plasma accelerators produce usable electron beams?
 - For what can we use those beams
- Next phase consortium: > 50 institutes
- Preparatory Phase project: 2022 2026 (ongoing)
- Start of 1st operation: 2028

600+ page CDR, 240 scientists contributed

A New European High-Tech Research Facility Delivering Frontier Science

Building a facility with very high field plasma accelerators, driven by lasers or beams 1 – 100 GV/m accelerating field

Shrink down the facility size

Producing particle and photon pulses to support several urgent and timely science cases

Enable frontier science in new regions and parameter regimes

Versatile – Designed for Users in Multiple Science Fields

Topics of research: proteins, viruses, bacteria, cells, metals, semiconductors, superconductors, magnetic materials, organic molecules

Delivers 10-100 Hz **ultrashort** pulses

- Electrons (0.1-5 GeV, 30 pC)
- Positrons
 (0.5-10 MeV, 10⁶)
- Positrons (GeV source)
- Lasers (100 J, 50 fs, 10-100 Hz)
- Betatron X rays (1-110 keV, 10¹⁰)
- FEL light (0.2-36 nm, 10⁹-10¹³)

EuPRAXIA: Enabling Additional Science \rightarrow **FEL**

Beam quality in pilot FEL experiments

electron bunch visible in press. Insets bor,d: Electron brain transverse distribution measured at LPA crit (b), at undulator

entrance (e) and at undulator exit (d)

7

Distributed Research Infrastructure (Sep 23)

Excellence centers: **several** (6 – 10) assumed to be realized

Second site: **one** to be selected

Connect with WP's to Horizon Europe and national funding lines

GDR APPEL - EuPRAXIA-PP - 13-XI-23

E^uPRAXIA

Phased Implementation of Construction Sites

	Laser-driven	Beam-driven		INFN (Italy): Facility for beam-dr
Phase 1	 ✓ FEL beamline to 1 GeV + user area 1 	 ✓ FEL beamline to 1 GeV + user area 1 		plasma accelerato
	 ✓ <u>Ultracompact positron</u> <u>source beamline</u> + positron user area 	 ✓ <u>GeV-class positrons</u> <u>beamline</u> + positron user area 		RF Injector Accel
Phase 2	 ✓ <u>X-ray imaging</u> <u>beamline</u> + user area 	 ✓ <u>ICS source</u> beamline + user area 		laser
	 ✓ Table-top test beams user area 	 ✓ HEP detector tests user area 		positrons
	✓ FEL user area 2	✓ FEL user area 2		Beamline LB-C
	✓ FEL to 5 GeV	✓ FEL to 5 GeV		Plasma I
Phase 3	 ✓ High-field physics beamline / user area 	 ✓ Medical imaging beamline / user area 		Beamline
	 ✓ Other future developments 	 ✓ Other future developments 		Plasma I
			-	

The EuPRAXIA Consortia Today

- **54 institutes** (in addition > 6 asked to join us presently)
- from **18 countries** plus CERN
- signed on one or several presently active EuPRAXIA consortia:
 - ESFRI consortium (funding in-kind) www.eupraxia-facility.org
 - Preparatory Phase consortium (funding EU, UK, Switzerland, in-kind) www.eupraxia-pp.org
 - Doctoral Network (funding EU, UK, in-kind) www.eupraxia-dn.org

EuPRAXIA European Project: History and Today

EuPRAXIA: Cost/Budget Status Aug 2023

Cost item	lnvest (M€)	Personnel (M€)	Total cost (M€)	Obtained (M€)	Coverage (%)	Missing (§) (M€)
Site 1 (*), Frascati	151,0	23,0	174,0	138,8	80%	35,2
Site 2 (**), tbd	149,0	29,0	178,0	0,0	0%	178,0
Termination	1,0	2,0	3,0	0,0	0%	3,0
CDR	0,2	2,8	3,0	3,0	100%	0,0
Preparation, incl. excellence centers	137,0	74,0	211,0	34,6	16%	176,4
Total	438,2	130,8	569,0	176,4	31%	392,6

(*) includes estimate of 240 FTE-y of personpower from LNF-INFN

(**) cost will be reduced in case of relevant pre-invests (exisiting infrastructure, equipment)

(§) for full implementation, phased EuRAXIA approach allows **user operation without full funding**

Outstanding Success in Funding so Far

- It is highly unusual to have this **high funding rate** at this stage of the project.
- We have sufficient funds to construct Phase 1 of EuPRAXIA
 at Site 1 = Frascati → construction process started
- But of course we want to build the full things: we can reduce the scope but we will loose some of our possible impact and we compromise leadership in the international landscape
- So Preparatory Phase will work out details for the full EuPRAXIA proposal with two sites, excellence centers, laser leg, applications and clusters of institutes!

E^[•]PRA IA

We are on ESFRI Roadmap of 2021

ESFRI = European Strategy Future Research Infrastructures

	ESFRI PROJECTS							
	NAME	FULL NAME	TYPE LEGAL Status (y)	roadmap Entry (y)	OPERATION Start (Y)	INVESTMENT Cost (M€) C	OPERATION Ost (M€/Y)	
	EST	European Solar Telescope	single-sited	2016	2029*	200.0	12.0	
Ĩ	ET	Einstein Telescope	single-sited	2021	2035*	1,912.0	37.0	
UNE I	EuPRAXIA	European Plasma Research Accelerator with Excellence in Applications	distributed	2021	2028*	569.0	30.0	
ES & EN	KM3NeT 2.0	KM3 Neutrino Telescope 2.0	distributed	2016	2020	196.0	3.0	
UIENU		Two new entries	in 2021: Einstein Telescope (I	ET) and	EuPRA	AXIA		

- EuPRAXIA is the only accelerator facility selected in the last 6 years ٠
- EuPRAXIA is the first plasma accelerator facility ever included •

PHYSICAL SCIENCES & ENGINEERING

PAG 18

EuPRAXIA: Official Member of the Big Club

OPERATION

20.0

80.0

48.0

20.0

82.0

140.0

COST (M€/Y)

PAG 19

PHYSICAL SCIENCES & ENGINEERING ESFRI LANDMARKS () TYPE NAME FULL NAME LEGAL ROADMAP STATUS (Y) ENTRY (Y) **CTA** Cherenkov Telescope Array gGmbH, 2014 2008 single-sited ERIC, 2021 ELI ERIC Extreme Light Infrastructure single-sited 2006 Extremely Large Telescope single-sited ESO# 2006 ELT distributed EMFL European Magnetic Field Laboratory AISBL 2015 2008 ESRF EBS European Synchrotron Radiation Facility ESRF# single-sited 2016 Extremely Brilliant Source European Spallation Source single-sited ERIC, 2015 2006 European Spallation Source ERIC

European XFEL	European X-Ray Free-Electron Laser Facility	single-sited	European XFEL#	2006	2017	1,540.0	137.0
FAIR	Facility for Antiproton and Ion Research	single-sited	GmbH, 2010	2006	2025*	NA	NA
HL-LHC	High-Luminosity Large Hadron Collider	single-sited	CERN#	2016	2027*	1,408.0	136.0
ILL	Institut Max von Laue - Paul Langevin	single-sited	ILL#	2006	2012	188.0	100.0
SKAO	Square Kilometre Array Observatory	single-sited	SKAO, 2011	2006	2027*	1,986.0	77.0
SPIRAL2	Système de Production d'Ions Radioactifs en Ligne de 2e génération	single-sited	GANIL	2006	2019	307.3	5.2

https://roadmap2021.esfri.eu

OPERATION

START (Y)

2024

2018

2027*

2014

2020

2026*

INVESTMENT

COST (M€)

400.0

850.0

170.0

128.0

3,009.0

1,309.0

Preparatory Phase Main Goals

- Managerial WP`s
 - **Outreach** to public, users, EU decision makers and industry
 - **Define** legal model (how is EuPRAXIA governed?), financial model, rules, user services and membership extension for full implementation
 - Works with project bodies and funding agencies → Board of Financial Sponsors
- Technical WP's (correspond to Project Clusters):
 - Update of CDR concepts and parameters, towards technical design (full technical design requires more funding)
 - Specify in detail Excellence Centers and their required funding: TDR related R&D, prototyping, contributions to construction
 - Help in defining funding applications for various agencies
- Output defined in **milestones & deliverables** with dates

Governing Board Decision-making body! Steering Committee Scientific Advisory Board Technical & Industrial Advisory Board of Financial Sponsors	WP1 - Coordination & Project Management R. Assmann, INFN & DESY M. Ferrario, INFN WP2 - Dissemination and Public Relations C. Welsch, U Liverpool S. Bertellii, INFN WP3 - Organization and Rules A. Specka, CNHS A. Ghigo, INFN WP4 - Financial & Legal Model. Economic Impact A. Fadone, INFN WP5 - Use Strategy and Services F. Stellato, U Tor Vergata E. Principi, ELETTRA WP6 - Membership Extension Strategy B. Cros, CNHS	WP7 - E-Needs and Data Policy R. Fonseca, IST S. Pioli, INFN WP8 - Theory & Simulation J. Vieria, IST H. Vincenti, CEA WP9 - RF, Magnets & Beamline Components S. Antipov, DESY F. Nguyen, ENEA WP10 - Plasma Components & Systems K. Caasou, CNRS J. Osterholf, DESY WP11 - Applications G. Sarri, U Belfast E. Chiadroni, U Sapienza WP12 - Laser Technology, Liaison to Industry L. Gizzi, CNR	WP13 - Diagnostics A. Cianchi, UTor Vergata R. Ischebeck, EPFL WP14 - Transformative Innovation Paths B. Hidding, U Strathclyde S. Karsch, LMU WP15 - TDR EuPRAXIA @SPARC-lab C. Vaccarezza, INFN R. Pompili, INFN R. Pompili, INFN WP16 - TDR EuPRAXIA Site 2 A. Molodozhentsev, ELI-Beamlines R. Pattahil, STFC
	B. Cros, CNRS A. Mostacci, U Sapienza	L. Gizzi, CNR P. Crump, FBH	

PP Steering Committee: Leaders Behind EuPRAXIA

Governing Board (Decision-making body)

> Steering Committee

Scientific Advisory Board

Technical & Industrial Advisory Board

Board of Financial Sponsors

WP1 - Coordination & Project Management R. Assmann, INFN & DESY M. Ferrario, INFN WP2 - Dissemination and Public Relations C. Welsch, U Liverpool S. Bertellii, INFN WP3 - Organization and Rules A. Specka, CNRS A. Ghigo, INFN WP4 - Financial & Legal Model. **Economic Impact** A. Falone, INFN **WP5** - User Strategy and Services F. Stellato, U Tor Vergata E. Principi, ELETTRA **WP6 - Membership Extension** Strategy **B. Cros, CNRS** A. Mostacci, U Sapienza

Industry L. Gizzi, CNR P. Crump, FBH WP's on coordination & implementation as ESFRI *RI* (organization, legal model, financing, users)

WP7 - E-Needs and Data Policy R. Fonseca, IST S. Pioli, INFN WP8 - Theory & Simulation J. Vieria, IST Paths H. Vincenti, CEA WP9 - RF, Magnets & Beamline Components S. Antipov, DESY F. Nguyen, ENEA WP10 - Plasma Components & **Systems** K. Cassou, CNRS J. Osterhoff, DESY WP11 - Applications G. Sarri, U Belfast E. Chiadroni, U Sapienza WP12 - Laser Technology, Liaison to

WP13 - Diagnostics A. Cianchi, U Tor Vergata R. Ischebeck, EPFL WP14 - Transformative Innovation B. Hidding, U Strathclyde

S. Karsch, LMU

WP15 - TDR EuPRAXIA @SPARC-lab

C. Vaccarezza, INFN R. Pompili, INFN

WP16 - TDR EuPRAXIA Site 2

A. Molodozhentsev, ELI-Beamlines R. Pattahil, STFC

WPs on technical implementation and sites

GDR APPEL - EuPRAXIA-PP - 13-XI-23

It Fits the Frascati Site

(also fits sites at a large university, hospital, company, ...)

Directorate building

EuPRAXIA@SPARC_LAB (Site 1)

R. Assmann, M. Ferrario - 5 June 2023

EuPRAXIA Advanced Photon Sources (EuAPS)

- Supported by PNRR funding
- Collaboration among INFN, CNR, University of Tor Vergata
- EuPRAXIA → laser-driven betatron radiation source @SPARC_LAB
 - → development of high power (up to 1 PW at LNS) and high repetition rate (up to 100 Hz at CNR Pisa) laser
 - ightarrow pre-cursor for user-facility

extra 22M€ (Italie)

- Ultrafast laser pulse duration tens of fs useful for time resolved experiments (XFEL tens of fs, synchrotron tens to 100 ps).
- 2) Broad energy spectrum important for X-ray spectroscopy.
- 3) High brightness small source size and high photon flux for fast processes
- 4) Large market 50 synchrotron light sources worldwide, 6 hard XFEL's and 3 soft-ray ones (many accelerators operational and some under construction).

Parameter		Value	unit
Electron bea	am Energy	100-500	MeV
Plasma Den	sity	10 ¹⁸ -10 ¹⁹	cm ⁻³
Photon Crit	ical Energy	1 -10	keV
Number of	Photons/pulse	10 ⁷ -10 ⁹	
Repetition r	ate	1-5	Hz
Beam diver	gence	3-20	mrad

Courtesy of A. Cianchi

'EuPRAXIA Advanced Photon Sources PNRR_EuAPS Project', M. Ferrario et al. INFN-23-12-LNF (2023)

2nd site candidates

Selection Criteria 2nd EuPRAXIA Site

(from CDR, fulfilled by 1st Site LNF/INFN)

Legal/Political	Technical	Financial
Compliance of host institution with EuPRAXIA Access Policy	Site provides sufficient <mark>space</mark> (about 175 m x 35 m)	Commitment to sustainability of EuPRAXIA (<mark>host lab covers site</mark> <mark>operation costs</mark>)
Compliance of host institution with EuPRAXIA Open Innovation and Open Science Policy	Laboratory has <mark>infrastructures</mark> in one or several of RF accelerators, laser installations, user access.	Previous investments into local infrastructures of relevance for EuPRAXIA (leverage effect)
Agreement of host institution with the long-term scientific agenda of EuPRAXIA	Site provides required services and facilities for support of external users, including E infrastructure	Existence of one or a mix of funding sources able to finance implementation of the site
Laboratory has existing group requirements (laser, radio-prot	Note: approach reduces cost (pre-invest and risks of cost-overur	

Ground area for extensions identified

Insert author and occasion

User Categories: collbaorative approach

Conclusion

- Plasma accelerators have advanced considerably in beam quality, achieving FEL lasing.
- EuPRAXIA is a design and an ESFRI project for a distributed European Research Infrastructure, building two plasma-driven FEL's in Europe.
- EuPRAXIA FEL site in Frascati LNF-INFN is sufficiently funded for **first FEL user operation in 2028**.
- Second EuPRAXIA FEL site will be selected in next 18 months, among **4 excellent candidate sites**.
- Concept today works in design and in reality. Expect (solvable) problems in stability for 24/7 user operation. Facility needed to demonstrate!

