

PALLAS une ligne de test pour l'accélération laser-plasma

Coline Guyot (Doctorante – 3^{ème} année)

cguyot@ijclab.in2p3.fr

Supervision: Christelle Bruni

Une ligne de test pour LPA: PALLAS

PALLAS = Ligne Compacte de test pour Injecteur Laser-Plasma Euprá

Axes de Recherche Principaux

Contrôle Laser Avancé

- Cible Plasma
- Ligne de Capture et Charactérisation d'électrons

Unité Paramètre Gamme Ciblé 5 – 150 pC Charge pC ≥ 30 MeV 200 150 - 250 Energie % Dispersion ≤ 5 < 10 Energie Divergence ≤ 1 ≤ 6 mrad

Simulations d'accélération Laser-Plasma [2] avec Smilei) [3] *'Particle_in_Cell' (PIC)*

Sorties = Inputs: **Simulations 'Start-to-End'**

→ Corrélations et Non-Linéaritées

Laser-Plasma: Faisceaux d'électrons

FACULTÉ DES SCIENCES universite D'ORSAY

W Université de Paris

cnrs

cnrs

FACULTÉ

DIORSAV

DES SCIENCES

Ъ

Université de Paris

X'

P

RF

Laser-Plasma: Faisceaux d'électrons

UNIVERSITÉ DES S PARIS-SACLAY D'OR

FACULTÉ

DES SCIENCES

Université de Paris

cnrs

Tracking

→ Vérificaction validité pour effets hors-axes et off-momentum importants

(cf. Comparaison CODAL avec TraceWin [4])

→ Vérification validité pour paquets courts / à fort courant crête

- Forte Dispersion en Energie :
 ~ quelques % (RF ~ 0.1s %)
- Charges: ~ 10 100s pC

- Petite Taille Transverse :
 ~ quelques microns (RF ≥ mm)
- Forte Divergence :
- ~ quelques mrad (RF ~ 0.1s mrad)

- Petite Taille Transverse : ~ quelques microns (RF \geq mm)
- Forte Divergence :

RF

~ quelques mrad (RF ~ 0.1_{s} mrad)

→ Vérificaction validité pour effets hors-axes

- et off-momentum importants
- (cf. Comparaison CODAL avec TraceWin [4])
- → Vérification validité pour paquets courts / à fort courant crête

Transport: Effets Chromatiques

FACULTÉ

DES SCIENCES D'ORSAY

UNIVERSITE PARIS-SACLAY

cnrs

W

Université de Paris

Transport: Effets Chromatiques et Hors-Axe

FACULTÉ

DIORSAV

DES SCIENCES

cnrs

Université de Paris

Ъ

Transport: Effets Chromatiques et Hors-Axe

FACULTÉ

DIORSAV

université

DES SCIENCES

CNrs

Ъ

Université de Paris

FACULTÉ DES SCIENCES

D'ORSAY

cnrs

UNIVERSITE

W

Université de Paris

FACULTÉ

DES SCIENCES D'ORSAY

UNIVERSITE PARIS-SACLAY

cnrs

W

Université de Paris

12

(CNTS)

Université de Paris

cnrs

Université de Paris

Laboratoire de Physique des 2 Infinis

Sélection & Variations: Pointé d'angle

CNIS UNIVERSITE

FACULTÉ DES SCIENCES

D'ORSAY

Université de Paris

Sélection & Variations: Pointé d'angle

• FACULTÉ UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY Université de Paris

2.5 x | pour 3mrad 2 y barycentre [mm] -x | sans pointé 1.5 0.5 -0.5 1.5 2.5 3 3.5 0 0.5 1 2 4 S [m] plan focal = positionnement du diaphragme

Exemple de l'influence du pointé d'angle sur la charge transmise

cnrs

16

Sélection & Variations: Energie Nominale

Variation Relative de l'énergie nominale du faisceau à la source [%]

 $\sigma_{\delta,r}\,[\%]$

= variations des caractéritiques du faisceau d'électrons à la source

→ Variations de nombreux paramètres dans de larges gammes

Grandeurs Initiales (Source)	Gamme des Variations
Charge Q _i	-
Energie E ₀	± 5 %
Pointé d'angle <y'<sub>i> et <x'<sub>i></x'<sub></y'<sub>	\pm 5 mrad = [-5,5] mrad
Dispersion Energie $\sigma_{\delta,i}$	±2%
Divergence $\sigma_{y',i}$	± 2 mrad
Divergence $\sigma_{x',i}$	$\sigma_{y',i} / \sigma_{x',i} = constante$
Offset de position $\langle y_i \rangle$ et $\langle x_i \rangle$	± 20 μm = [-20,20] μm

Tirages aléatoires suivant une loi de probabilité uniforme

FACULTÉ

DIORSAV

DES SCIENCES

TY

Université de Paris

 \rightarrow Quelques exceptions:

- [divergence horizontale]: corrélation $\sigma_{y',i}$ / $\sigma_{x',i}$ = constante
- [tailles]: $\sigma_{y_s} \sigma_x$ et σ_s constants
- [charge]: Q_i, constant

Université de Paris

Après Sélection

Propriétés du faisceau sélectionné passant dans un diaphragme de 400 µm de diamètre pour 10 000 tirs suivant des lois de probabilité uniformes

À la Source

CNIS

Grandeurs Initiales (Source)	Paramètres nominaux	Gamme des Variations
Charge Q _i	125 pC	
Energie E ₀	212 MeV	± 5 % = [201,4,222,6] MeV
Pointé d'angle <y'<sub>i> et <x'<sub>i></x'<sub></y'<sub>	0 mrad	\pm 5 mrad = [-5,5] mrad
Dispersion Energie $\sigma_{\delta,i}$	6 %	± 2 % = [4,8] %
Divergence $\sigma_{y',i}$	5 mrad	\pm 2mrad = [3,7] mrad
Divergence $\sigma_{x,i}$	3.4 mrad	$\sigma_{y',i} / \sigma_{x',i} = cst$
Offset de position $\langle y_i \rangle$ et $\langle x_i \rangle$	0 µm	± 20 μm = [-20,20] μm

Assemblée Générale du Groupe de Recherche APPEL | 15 Novembre 2023 | Coline Guyot

[1] P. Drobniak, et al. Random scan optimization of a laser-plasma electron injector based on fast particle-in-cell simulations. Phys. Rev. Accel. Beams, 26:091302, Sep 2023 doi: https://doi.org/10.1103/PhysRevAccelBeams.26.091302

Emittance

Université de Par<u>is</u>

Evolution of the Normalized Emittance [mm.mrad] after the focusing as a function of either the y Initial Divergence [mrad] (+) or the Normalized Energy Spread [%] (x)

Simulated resulting normalized emittance [mm.mrad] according to the initial energy spread [%] and divergence [mrad]

cnrs

→ Après collimateur, l'émittance dominé par les effets hors-axes

Sélection & Variations tir-à-tir

D'ORSAY

À la Source

Grandeurs Initiales (Source)	Gamme des Variations
Charge Q _i	-
Energie E ₀	± 5 %
Pointé d'angle <y'<sub>i> et <x'<sub>i></x'<sub></y'<sub>	\pm 5 mrad = [-5,5] mrad
Dispersion Energie $\sigma_{\delta,i}$	±2%
Divergence $\sigma_{y',i}$	± 2mrad
Divergence $\sigma_{x',i}$	$\sigma_{y',i} / \sigma_{x',i} = constante$
Offset de position $\langle y_i \rangle$ et $\langle x_i \rangle$	± 20 μm = [-20,20] μm

Laboratoire de Phys des 2 Infinis В ۸_{6 x,r} [mm.mrad] م م م م ^مy',i</sub> [mrad] ه ه ن σ_{y',i} [mrad] ω τ σ_{δ,i} [%] $\sigma_{\delta,\mathsf{i}}$ [%] Après Sélection

В Δ 20 30 Q_r [pC] $N\epsilon_{y,r}$ [mm.mrad]

Assemblée Générale du Groupe de Recherche APPEL | 15 Novembre 2023 | Coline Guyot

a

