\underline{Ces}

Laboratoire Interactions, Dynamiques et Lasers EMR9000 CEA, CNRS, Université Paris-Saclay

A novel laser-driven electron scheme based on a plasmamirror injector

Thomas Clark

15/11/2023

Laboratoire Interactions, Dynamiques et Lasers - http://iramis.cea.fr/LIDYL/

0. Gobert T. Ceccotti A. Pa **Experiments**

P. Forestier-Colleoni

incenti

H. Vincenti (head of numerical division) P. Martin

Theory / since latio

S. Dobosz Dufrénoy

A. Panchal

A. Ammar

Theory/simulations

T. Clark

L. Fedeli

P. Bartoli

I. Kara-Mostefa

Laboratoire d'optique Appliquée – UPX team Experimental team (Adrien):

A. Leblanc

Outline

The idea of the Hybrid Target

WarpX : an exascale PIC code

Numerical study

Experimental validation

Outline

The laser wakefield acceleration acceleration provides compact & energetic electron sources, but the charge is typically low....

> Very compact : 8 GeV on cm

A. J. Gonsalves et al, PRL, 2019

Limitation : Provides low charge per bunch

The laser wakefield acceleration acceleration provides compact & energetic electron sources, but the charge is typically low....

Where does the idea of the Hybrid Target comes from ? **Electron acceleration in gas**

- Low charge : 10s to 100s pC
 But
- High energy : 100s Mev to GeV
 Low divergence

Where does the idea of the Hybrid Target comes from ? **Electron acceleration in gas**

- Low charge : 10s to 100s pC
 But
 ✓ High energy : 100s Mev to GeV
 - Low divergence

Electron acceleration with a plasma mirror

✓ High chargeBut

- ✤ Low energy : 10 MeV
- High divergence

A two-step process :

A two-step process :

1) Injection from the solid target
 2) Acceleration in the gas

A two-step process :

1) Injection from the solid target

2) Acceleration in the gas

It should provide :

- \checkmark A high charge from the high density of the solid target
- \checkmark A high quality since the injection is localized at solid surface

Outline

WarpX is an open-source Particle-In-Cell code for the exascale era.

WarpX is an open-source Particle-In-Cell code for the exascale era.

Open-source & available on Github Documentation: **ecp-warpx.github.io/**

WarpX is an open-source Particle-In-Cell code for the exascale era.

Open-source & available on Github Documentation: ecp-warpx.github.io/

WarpX offers a comprehensive set of additional physical modules

We implement **tunnel ionization** (ADK theory)

We implement **Coulomb collisions** and collisions with **neutral background**

We implement deuterium-deuterium, deuterium-tritium, deuterium-helium and proton-boron fusion

We implement quantum synchrotron and nonlinear Breit-Wheeler pair production

WarpX provides advanced algorithms

We provide the option of improving the resolution in a certain region of the simulation :**"Mesh Refinement**"

We provide the option of using a **"Boosted frame"**, where the simulation may be orders of magnitude faster

(and several others!)

What does it gives in simulation ?

A movie from our 3D simulations

Why those simulations are challenging?

An ultra-short laser beam propagates in a low density gas

The laser pushes electrons away and generates a positively charged "bubble"

The laser is reflected by the high-density plasma and the bubble traps some of its electrons

The bubble accelerates electrons over few millimeters

+++++

We can have smaller simulation boxes with a "moving window"

The main challenge concerns laser-solid interaction

We need a resolution of few 10s nanometers for lasersolid interaction \rightarrow

The main challenge concerns laser-solid interaction

We need a resolution of **few 10s nanometers** for lasersolid interaction \rightarrow

but

Hefty price to pay: dt - dx and size - (1/dx)³

WarpX is an open-source Particle-In-Cell code for the exascale era.

Open-source & available on Github Documentation: ecp-warpx.github.io/

From your laptop to the largest supercomputers in the world!

WarpX is an open-source Particle-In-Cell code for the exascale era.

Open-source & available on Github Documentation: **ecp-warpx.github.io/**

Gordon Bell prize winner @

From your laptop to the largest supercomputers in the world!

We need the most powerful supercomputers

 Architecture
 Rank in TOP500

WarpX is built on top of the AMReX library, which provides performance portability

Python: PICMI (optional)					
WarpX					
Diagnostics I/O code coupling openPMD ADI OS2 F5 ZFP	AMReX Containers and Algorithms	Lin. Alg. BLAS++ LAPACK++	PICSAR optional, modular physics extensions	FFT on- or multi- device	
MPI CUDA, OpenMP, DPC++, HIP					

WarpX is built on top of the AMReX library, which provides performance portability

Python: PICMI (optional)						
WarpX						
Diagnostics I/O code coupling openPMD ADI OS2 F5 ZFP	AMReX Containers and Algorithms	Lin. Alg. BLAS++ LAPACK++	PICSAR optional, modular physics extensions	FFT on- or multi- device		
MPI CUDA, OpenMP, DPC++, HIP				HIP		

WarpX is built on top of the AMReX library, which provides performance portability

Python: PICMI (optional) WarpX Diagnostics I/O PICSAR FFT Lin. **AMReX** code coupling Alg. optional, modular on- or openPMD Asc **Containers and Algorithms** physics multi-BLAS++ ADI HD LAPACK++ device extensions OS2 ZFP MPI CUDA, OpenMP, DPC++, HIP

Single source approach

using namespace amrex ;
int N = 1'000'000;
<pre>Gpu::ManagedVector<double> a(N); Gpu::ManagedVector<double> b(N); Gpu::ManagedVector<double> c(N); Gpu::ManagedVector<double> result(N);</double></double></double></double></pre>
/* OTHER CODE*/
<pre>auto d_a = a.data(); auto d_b = b.data(); auto d_c = c.data(); auto d_result = c.data();</pre>
<pre>ParallelFor(N, [=] AMREX_GPU_DEVICE (int i){ d_result[i] = d_a[i]*d_b[i] + d_c[i]; });</pre>

WarpX can be used for many different applications

Plasma accelerators (LBNL, DESY, SLAC) Laser-ion acceleration advanced mechanisms (LBNL)

Plasma mirrors and high-field physics + QED (CEA Saclay/LBNL)

Laser-ion acceleration laser pulse shaping (LLNL)

Fusion devices (Zap Energy, Avalanche Energy)

Thermionic converter (Modern Electron)

Pulsars, magnetic reconnection (LBNL)

Microelectronics (LBNL) – ARTEMIS

The main challenge concerns laser-solid interaction

The main challenge concerns laser-solid interaction

How do we switch resolution in the middle of the simulation?

Mesh refinement in a Particle-In-Cell code is **a nightmare!**

Mesh refinement in a Particle-In-Cell code is **a nightmare!**

Electromagnetic waves have different dispersion relations in the two areas! < (spurious reflections, unphysical effects...)

ⁱ Main grid: F_n(a)

Mesh refinement in a Particle-In-Cell code is a nightmare! **Electromagnetic waves have different** dispersion relations in the two areas! (spurious reflections, unphysical effects...) High resolution Inside patch at L_{n+1}: here! $F_{n+1}(a) = I[F_n(s)-F_{n+1}(c)]+F_{n+1}(f)$ a=auxiliary f=fine PML =coarse

> J.-L. Vay et al, Phys. Plasmas 11, 2928 (2004) R. Lehe et al, Phys. Rev. E 106, 045306 (2022)

2D slices of our 3D simulations highlight the acceleration process

←We are mainly concerned with the properties of these electrons

Outline

Our simulations with a PW-class laser show that we can accelerate a substantial amount of charge with high quality

After ~ 1mm (acceleration still in progress)

Production runs on

> Study with PIC simulations

> Study with PIC simulations

> Study with PIC simulations

> Study with PIC simulations

Complicate to accelerate high charge on high power lasers with conventional techniques

Higher charge than other techniques !

> Study with PIC simulations

Complicate to accelerate high charge on high power lasers with conventional techniques

Higher charge than other techniques !

> Study with PIC simulations

Complicate to accelerate high charge on high power lasers with conventional techniques

Higher charge than other techniques !

With also a good energy spread (between 4 and 10%)

> What does it give on PW class laser :

 \geq

Outline

The idea of the Hybrid Target

WarpX : an exascale PIC code

Experimental validation

loa With Adrien Leblanc, UPX

Laser parameters E = 400 mJ waist = 17 μm P_{peak} = 10 TW

> The simulations also help us to design the next experiments

Results

Q= 17 pC dE/E_{peak} = 8% Divergence = 6 mrad

Results

Q= 17 pC dE/E_{peak} = 8% Divergence = 6 mrad And...

Stability shot by shot !

Results

Q= 17 pC dE/E_{peak} = 8% Divergence = 6 mrad And... Stability shot by shot !

Validated with simulations Q= 26 pC $dE/E_{peak} = 9\%$ Divergence = 10 mrad

IDA With Adrien Leblanc, UPX

```
Laser parameters
E = 1.1 J
waist = 25 μm
P<sub>peak</sub> = 40 TW
```


> Conversion efficiency is 2x better than the state of the art

> The results are more than 2 times better than state-of-art in efficiency

Next experimental campaign at apollon !

Next experimental campaign at apollon ! Preliminary results : Q=600pC E = 600 MeV dE/E_{peak} = 5%

Promising for QED experiments !

Next experimental campaign at LP3 at Marseille! **Preliminary results :** Q=30pC E = 100 MeV $dE/E_{peak} = 30\%$ **Promising for** radiobiology and radiotherapy experiments!

Conclusions and perspectives

• The Hybrid target is an ambitious scheme to numerically study and it is possible thanks to the WarpX P.I.C. code

Conclusions and perspectives

• The Hybrid target is an ambitious scheme to numerically study and it is possible thanks to the WarpX P.I.C. code

• The Hybrid Target provide high charge beams at high energy but with also high quality !

Conclusions and perspectives

• The Hybrid target is an ambitious scheme to numerically study and it is possible thanks to the WarpX P.I.C. code

• The Hybrid Target provide high charge beams at high energy but with also high quality !

• This promising technique could have bigger impact on PW class laser and at High rate with lower energy

A novel laser-driven electron scheme based on a plasmamirror injector

Luca Fedeli, Axel Huebl, France Boillod-Cerneux, <u>Thomas Clar</u>k, Kevin Gott, Conrad Hillairet, Stephan Jaure, Adrien Leblanc, Rémi Lehe, Andrew Myers, Christelle Piechurski, Mitsuhisa Sato, Neil Zaim, Weiqun Zhang, Jean-Luc Vay, Henri Vincenti

