MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

UNIDADE DE PESQUISA DO MCTI

open Universe Initia **A Capacity Building Initiative**

Ulisses Barres de Almeida, CBPF & CLAF

With thanks to Paolo Giommi

Astro-COLIBRI Workshop - Institute Pascal - 20 NOV 2023

CONTEXT

Space accessibility is one of the four pillars (others being space economy, space society and space diplomacy) supporting a Space 2030 Agenda, as established after UNISPACE+50.

- The Agenda envisions strategies and activities to strengthen the contribution of the space sector to the achievement of global targets, such as the SDGs.
- In particular, **space accessibility** responds to the underlining fundamental goal of sharing the benefits of space exploration amongst all nations.
- Reduction of inequality of opportunities in the growing and diversifying space sector, and enhancement of international cooperation in space, are at the basis of efforts to build a peaceful future of outer space.

DATA AS AN ENTRY DOOR TO SPACE

Data is specially relevant for space accessibility, and the distribution of the benefits of space exploration today.

orbit & o orbit & outer education space space technolog technology data & facilities & facilities

Among the different avenues for space accessibility, data stands out as

- the most sustainable entry point,
- providing a cheap and secure starting level,
- based on education and capacity building

DATA AS AN ENTRY DOOR TO SPACE

of the benefits of space exploration today.

It also offers a orbit &

 cost-effective avenue for space international co-operation for development,

technolo & facilitie

- whereby local groups and new players can be quickly welcomed into the global arena,
- and impactful "south-south" co-operation can quickly be initiated.

Data is specially relevant for space accessibility, and the distribution

ORIGINS OF THE INITIATIVE

Original Open Universe Proposal at 59th COPUOS: A/AC.105/2016/CRP6

"Open Universe" was originally proposed by Italy as an initiative under the auspices of COPUOS, during the preparations for UNISPACE+50.

- Main goal is to dramatically expand the availability and access to space science data, responding to the growing demands of transparency on the use of public resources and of the societal returns of science.
- Motivated by (i) from one side, the evidence of the increased rate of production of scientific data in all fields, including space science, and the responsibility to convert such data into effective knowledge; (ii) on the current context in which technological barriers to data sharing and access have been dramatically reduced, opening up new opportunities for knowledge dissemination and inclusion.

Сошиние он не геасени **Uses of Outer Space Fifty-ninth session** Vienna, 8-17 June 2016

> "Open Universe" proposal, an initiative under the auspices of the Committee on the Peaceful Uses of Outer Space for expanding availability of and accessibility to open source space science data.

Proposal by Italy

Erom Data Contros to Computing Centr I - Dramatic increase in the volume of data produced in astronomy and space sciences

Space Telescope Science Institute Archives

Unique authors chart

HST has one of the best-serviced data archives amongst astronomical observatories, which resulted in an increase of 2x the number of science publications and number of papers and unique authors.

US National Academy of Sciences Publication output for major astronomical facilities

The example of the Hubble Space Telescope

Discovery in the media

7	
000	20

II - Evolution of information technology opens new opportunities for data sharing, accessibility, and utilisation.

DEMOCRATISING KNOWLEDGE

UN Workshop Genève, Univ. and Walter, Rol \bigcirc

Transparency Matrix

Massimo De Angelis, ASI

Mute Transparency: Open data have no transparency;

Apparent Transparency: Open data have low usability level, even if accessibility is high;

Partial Transparency: Open data have a high usability level, even if accessibility is low;

Communicative Transparency: Open data have good quality level and accessibility. At this stage effective transparency is reached.

"Sustainability" of open data for Development

The basic resources (e.g. IVOA) are already in place.

With some small-ish effort the entry barrier can be further lower to welcome a growing and diverse number of actors.

Developmental and societal impact is the best argument for justifying additional expenditure to maintain services by e.g. large missions.

Increased cooperation reduces costs in the longterm.

Knowledge-based society?

Examples from Citizen-Science

RNAAS RESEARCH NOTES OF THE AAS

Single Transits and Eclipses Observed by K2

Daryll M. LaCourse (D) and Thomas Lee Jacobs Published 2018 February 9 • © 2018. The American Astronomical Society. All rights reserved. Research Notes of the AAS, Volume 2, Number 1

References
Article data

OYAL ASTRONOMICAL SOCI MNRAS 494, 750-763 (2020)

Advance Access publication 2020 January 23

Planet Hunters TESS I: TOI 813, a subgiant hosting a transiting Saturn-sized planet on an 84-day orbit

N. L. Eisner[®],¹* O. Barragán,¹* S. Aigrain,¹ C. Lintott[®],¹ G. Miller,¹ N. Zicher,¹ T. S. Boyajian,² C. Briceño,³ E. M. Bryant,^{4,5} J. L. Christiansen,⁶ A. D. Feinstein,⁷ L. M. Flor-Torres,⁸ M. Fridlund,^{9,10} D. Gandolfi,¹¹ J. Gilbert[®],¹² N. Guerrero,¹³ J. M. Jenkins,⁶ K. Jones,¹ M. H. Kristiansen,¹⁴ A. Vanderburg,¹⁵ N. Law,¹⁶ A. R. López-Sánchez,^{17,18} A. W. Mann,¹⁶ E. J. Safron,² M. E. Schwamb,^{19,20} K. G. Stassun[®], ^{21,22} H. P. Osborn[®], ²³ J. Wang, ²⁴ A. Zic[®], ^{25,26} C. Ziegler, ²⁷ F. Barnet, ²⁸† S. J. Bean,²⁸[†] D. M. Bundy,²⁸[†] Z. Chetnik,²⁸[†] J. L. Dawson,²⁸[†] J. Garstone,²⁸[†] A. G. Stenner,²⁸[†] M. Huten,²⁸[†] S. Larish,²⁸[†] L. D. Melanson,²⁸[†] T. Mitchell,²⁸[†] C. Moore,²⁸[†] K. Peltsch,²⁸[†] D. J. Rogers,²⁸[†] C. Schuster,²⁸[†] D. S. Smith,²⁸[†] D. J. Simister,²⁸⁺ C. Tanner,²⁸⁺ I. Terentev²⁸⁺ and A. Tsymbal²⁸⁺

Affiliations are listed at the end of the paper

Accepted 2020 January 6. Received 2019 December 20; in original form 2019 September 12

ABSTRACT

We report on the discovery and validation of TOI 813 b (*TIC 55525572 b*), a transiting exoplanet identified by citizen scientists in data from NASA's Transiting Exoplanet Survey Satellite (TESS) and the first planet discovered by the Planet Hunters TESS project. The host star is a bright (V = 10.3 mag) subgiant ($R_{\star} = 1.94 R_{\odot}$, $M_{\star} = 1.32 M_{\odot}$). It was observed almost continuously by TESS during its first year of operations, during which time four individual transit events were detected. The candidate passed all the standard light curve-based vetting checks, and ground-based follow-up spectroscopy and speckle imaging enabled us to place an upper limit of $2 M_{Jup}$ (99 per cent confidence) on the mass of the companion, and to statistically validate its planetary nature. Detailed modelling of the transits yields a period of $83.8911^{+0.0027}_{-0.0031}$ d, a planet radius of $6.71 \pm 0.38 R_{\oplus}$ and a semimajor axis of $0.423^{+0.031}_{-0.037}$ AU. The planet's orbital period combined with the evolved nature of the host star places this object in a relatively underexplored region of parameter space. We estimate that TOI 813 b induces a reflex motion in its host star with a semi-amplitude of $\sim 6 \,\mathrm{m \, s^{-1}}$, making this a promising system to measure the mass of a relatively long-period transiting planet.

Key words: methods: statistical-planets and satellites: detection-stars: fundamental parameters - stars: individual (TIC-55525572 - TOI 813).

1 INTRODUCTION

The Transiting Exoplanet Survey Satellite (*TESS*; Ricker et al. 2015) is the first nearly all-sky space-based transit search mission. Over the course of its two-year nominal mission, TESS will observe hemisphere) that extend from the ecliptic pole to near the ecliptic plane. Targets located at low ecliptic latitudes (around 63 per cent of the sky) will be monitored for \approx 27.4 continuous days, while a total of \sim 2 per cent of the sky at the ecliptic poles will be observed continuously for \sim 356 d. This observational strategy means that

* E-mail: nora.eisner@new.ox.ac.uk (NLE); oscar.barraganvillanueva@physics.ox.ac.uk (OB) ^{9).} † Citizen Scientist, Zooniverse.

Citizen-science are co-authors in MNRAS article baseado on a project from zooniverse.org

Paper at Research Notes of AAS totally lead and authored only by citizen-scientists.

1 Society

Knowledge-based society?

Examples from Citizen-Science

12th Cosmic Ray International Seminar - CRIS 2022 Journal of Physics: Conference Series 2429 (2023) 012045 doi:10.1088/1742-6596/2429/1/012045

A catalog of new Blazar candidates with Open Universe by High School students

¹ Liceo Scientifico Statale U. Morin, via Asseggiano 39, I-30174, Venezia, Italy ² University of Padore Don of Physics and Astronomy, via Marzolo 8, I-35131,

Padova, Italy ³ INFN sez. Pado ⁴ Center for Astro Abu Dhabi, PO B ⁵ Institute for Adv 2a, D-85748 Garch ⁶ Centro Brasileiro E-mail: † michele

September 2022

Abstract. Blazars are active galactic nuclei whose ultra-relativistic jets are coaligned with the observer direction. They emit throughout the whole e.m. spectrum, from radio waves to VHE gamma rays. Not all blazars are discovered. In this work, we propose a catalog of new highly probable candidates based on the association of HE gamma ray emission and radio, X-ray an optical signatures. The relevance of this work is also that it was performed by four high school students from the Liceo Ugo Morin in Venice, Italy using the open-source platform Open Universe in collaboration with the University of Padova. The framework of the activity is the Italian MIUR PCTO programme. The success of this citizen-science experience and results are hereafter reported and discussed.

DATA ACCESS RESOURCES MEDIA TUTORIALS FEEDBACK A tool to find and work with blazars Learn more 🗧

https://firmamento.hosting.nyu.edu

IOP Publishing

L. Fronte¹, B. Mazzon¹, F. Metruccio¹, N. Munaretto¹ M. Doro^{†,2,3}, P. Giommi^{†,4,5}, I. Viale^{2,3}, U. Barres de Almeida⁶

a, Italy (CAP3), New York University ab Emirates ität München, Lichtenbergstrasse

ieiro, Brasil

Qgmail.com

D			5 97 97								
Fermi ID		Ra	Dee	1.			100				
4FGL J0000.	7 + 2530	0.188	25 E1	E L	SSUM	ID			D.		ut ar e
4FGL J0026.	1-0732	6.540	20.51		SSUM	J0001.2-	+2546		Ra	D	ec
4FGL J0045.8	8-1324	11.472	-13 40		SSUM	J0006.9-	0752		0.116	25.	468
4FGL J0055.7	'+4507	13.940	45 19/	S LS	SUM	J0115.1-	1341	1	1 510	-7.	521
4FGL J0152.9	-1109	28.237	-11 169		SUM	J0139.2+	-4512	1	2 000	-13.	411
4FGL J0154.6	+0051	28.661	0.860		SUM	J0283.0-1	1111	2	0.929 9 90F	45.1	117
4FGL J0159.8	-2234 2	29.951	-22 570		SUM	J0287.5+	0831	2	0.305	-11.	107
4FGL J0231.0	+3505 3	7.775	35 100	D LS	SUM .	J0299.4-2	255	20	0.751	0.8	31
4FGL J0249.2	+1652 4	2.303	16 890	LS	SUM .	J0378.0+	3508	23	7.945	-22.5	548
4FGL J0251.1-	1830 4	2.784	-18 500	LSS	SUM .	J0422.6 +	1688	31	.801	35.0	79
4FGL J0357.7-	6808 5	9.440	-10.009	LSS	SUM J	0427.9-1	852	42	.262	16.8	83
4FGL J0420.6-	4802 6	5.173	18 040	LSS	UM J	0593.8-68	816	42	.798	-18.5	20
4FGL J0438.0-	7329 69	9.524	72 405	LSS	UM J	0651.6-47	795	59	.385	-68.1	59
4FGL J0539.2-6	3333 85	.055	6 015	LSS	UM J	0696.5-73	49	05	.161 .	47.9	51
4FGL J0625.5+	7029 96	.392	0.917	LSS	UM J	0847.3-63	54	69.	.654 .	73.48	39
4FGL J0641.4+	3349 100	0.356	22 800	LSS	UM J	0963.9 + 7	049	84.	733 .	63.54	14
4FGL J0751.2-0	029 117	.812	0.400	LSSI	JM J1	004.2 + 3	382	96.	395	70.49	5
4FGL J0800.9+0	0733 120	.226	0.488	LSSI	JM J1	178.3-00	16	100.	425 3	33.82	4
4FGL J0815.5+6	6554 123	.880 6	7.551 F 000	LSSU	JM J1	202.4+07	754	117.	830 .	0.464	1
4FGL J0838.5+4	1013 129	.629 4	0.900	LSSU	JM J1	239.1 + 65	83	120.	236	7.543	
4FGL J0903.5+4	057 135	899 4	0.224	LSSU	M J1:	297.6 + 40	26	123.	914 6	5.834	
4FGL J0914.5+6	845 138.	647 6	0.962	LSSU	M J1:	358.1 + 40	93	129.	763 4	0.263	0.
4FGL J0944.6+5	729 146	000 00	5.751	LSSU	M J13	386.2 + 68	75	135.8	811 4	0.934	0.
4FGL J1047.2+6	740 161	820 65	.192	LSSU	M J14	61.3+57	50	138.6	624 68	8.752	-
4FGL J1118.1+58	857 169	542 50	.674	LSSU	M J16	17.7+676	33	146.1	34 57	7.593	0.7
4FGL J1146.0-06:	38 176	502 6	.965	LSSU	M J16	92.9+580	10	161.7	74 67	.633	-
4FGL J1155.2-111	1 178.8	20 11	638	LSSUI	M J11	4601-063	855	169.2	86 58	.988	0.0
4FGL J1158.8-143	0 179.7	00 14	.189	LSSUN	A J11	5515-111	199	176.5	04 -6	649	-
4FGL J1403.7+24	29 210.9	36 04	.501	LSSUN	4 J115	5817-1430	120	178.8	12 -11	.190	-
4FGL J1409.8+79	21 212.4	64 70	495 1	LSSUN	1 J140	350 + 243	305	179.57	70 -14	.516	-
4FGL J1441.4-193	4 220.3	50 10	351 1	LSSUM	I J141	046+792	414	210.95	8 24.	549	0.34
4FGL J1452.0-414	8 223.0	17 41	578 1	SSUM	J144	128-1935	414 59	212.69	3 79.	403	-
4FGL J1519.7+672	27 229 9/	13 67	804 I	SSUM	J145	225-4140	19	220.36	6 -19.	599	-
4FGL J1544.9+321	8 236 23	0 07.4	158 L	SSUM	J152	000 ± 673	10	223.10	1 -41.	830	-
4FGL J1554.2+200	8 238 55	3 32.3	04 L	SSUM	J1544	133+3221	40	229.99	67.5	540	-
4FGL J1626.5+625	7 246.64	3 20.1 4 60.0	48 L	SSUM	J1554	124+2011	95	236.138	3 32.3	64	0.51
IFGL J1628.2+464	2 247.06	4 62.9	59 L	SSUM	J1626	46+6300	20	238.601	20.1	90	0.22
FGL J1658.5+431	5 254 64	5 46.7 6 49.0	15 L	SSUM	J1627	55+4642	49 1	246.692	63.0	14	-
FGL J1706.4+6428	256 604	43.2	54 LS	SSUM	J1658	32+4316	49 2	246.981	46.7	13	0.21
FGL J1727.1+5955	261 776	64.47	75 LS	SUM	J1706	23+64970	10 2	54.631	43.2'	73	-
FGLJ1923.0-4746	290 752	59.92	26 LS	SUM .	J1726	40+5055	60 2	56.597	64.45	57	-
FGLJ1928.5+5339	200.732	-47.76	59 LS	SUM .	J2907	6-4775	19 2	61.669	59.93		0.78
FGLJ2012.1-5234	303 030	53.65	3 LS	SUM .	12921	415965	2	90.768	-47.75	51	-
GLJ2020.7-4536	305 109	-52.57	0 LS	SUM J	3030	5-5954	2	92.141	53.65	2	_
GLJ2022.3+0413	305 500	-45.61	4 LS:	SUM J	3050	9-4540	30	03.058	-52.54	8	-
GLJ2028.8-0010	307 215	4.222	LSS	SUM J	3056 ()	30)5.094	-45.49	1	-
GLJ2030.3-5038	307.215	-0.171	LSS	SUM J.	3072 0	-0149	30	5.604	4.210		
GLJ2038.7-3655	300.690	-50.634	4 LSS	SUM J	3075 9	5057	30	7.209	-0.144		
GLJ2142.5-2029	325 640	-36.925	5 LSS	UM J	3096 G	-36.00	30	7.599	-50.570		-
GLJ2144.8-1600	326.010	-20.497	LSS	UM Ja	256 6	-20.47	30	9.668	-36.908	3	- -
GLJ2201.0-3228	330 057	-16.010	LSS	UM J3	261 6	1500	32.	5.667	-20.473		-
GLJ2207.1+2222	331 701	-32.477	LSS	UM .13	306.0	30.17	326	5.163	-15.993		
GLJ2217.0-6727	334.0==	22.374	LSSI	UM 13	317.6	04.17	330	0.610	-32.171		51 - 8 25
LJ2237.2-6726	334.255	-67.453	LSSI	JM 13	342 4	6740	331	.767	22.376		56
LJ2237.8+2430	330 450	-67.437	LSSI	JM 13	202 0	0746	334	.247	-67,468	0.3	00
100	339.458	24.511	LSSU	JM .133	194.0-1	2454	339	.289	-67.430	-	s 0
					04.0+	-2454	339.	410	24.548	0	50
				1.1						1 0.0	0

HOME DATA ACCESS RESOURCES MEDIA TUTORIALS FEEDBACK

CENTER FOR ASTROPHYSICS AND SPACE SCIENCE

A tool to find and work with blazars

Learn more $\stackrel{\scriptstyle \scriptstyle \sim}{\scriptstyle \sim}$

- 198

جامعة نيويورك أبوظبي **NYU ABU DHABI**

Blazars

Blazars are very special cosmic laboratories that involve matter falling onto supermassive black holes and the ejection of narrow jets of particles that move at a velocity that is close to the speed of light.

Learn more »

firmamento.hosting.nyu.edu

OU for blazars OU for GRBs Space Astronomy » Image galleries » Open software » Other Initiatives » Educational contents »

Help & video tutorials

▽ OU Parameters

Astronomy

Planetary Science

Cosmic Rays

Atmospheric Physics

Open Universe

- Open Universe international doctoral school, Nice
- Open Universe Workshop @ New York University Abu Dhabi

MMDC mmdc.am

WELCOME TO MMDC

Markarian Multiwavelength Data Center (MMDC): a platform for building and analyzing multiwavelength SEDs.

GET STARTED

Preliminary Objectives

and archives...

RESURFACE DATA and other hidden or otherwise hardly accessible **resources:** by identifying inaccessible data and working with national and regional entities to solve the challenges to make them public, including legacy data, as well as bringing new main players and actors in the international space science arena into the Initiative and in contact with other public data access solutions.

BROADEN THE USER-BASE of astronomy and space science data: to include as well the rapidly growing community of citizen scientists, by providing the necessary tools to use astronomy and space science data for a range of target groups, including educators and students, planetariums, amateur scientists or other potential end-users; and by promoting STEM education, particularly among women and youth in developing countries.

INCREASE TRANSPARENCY of already accessible resources: including promoting FAIR (Findable, Accessible, Interoperable, Reusable) guiding principles, promoting the adoption of widely-used standards, processing from raw data to web-ready products, enhanced data-mining and integration solutions, interfacing and facilitating cooperation between data providers and data centres

Outcomes from the UN Open Universe Workshop, 2017

STEPS TOWARDS THE OPEN UNIVERSE INITIATIVE

osal	Experts Meeting @ ASI, Feb 2017 http://www.openuniverse.asi.it/documents/ou_documents.ph
g at ASI	United Nations Workshop, Nov 2017 http://www.unoosa.org/oosa/en/ourwork/psa/schedule/2017/ workshop_italy_openuniverse.html
UN enna	UNOOSA Report on Open Universe: http://www.unoosa.org/oosa/oosadoc/data/documents/201 aac.105/aac.1051175 0.html
vities"	"Zero Draft" 2030 Agenda: http://www.unoosa.org/oosa/oosadoc/data/documents/2019/ aac.105c.22019crp/aac.105c.22019crp.24_0.html
genda	
se ting	All necessary instruments are in place from the side of E and UNOOSA to move ahead with implementation

What is next for Open Universe?

Initiative

actors around the world.

to sustain capacity building activity.

The next step is to connect the demand to providers, in a sustainable capacity building initiative.

MINISTÉRIO DA TECNOLOGIA E INOVACÃO

Open Universe is the right concept for a UN-based Capacity Building

It is a focus point for development actions, connecting various

• There is an ever-growing set of infrastructure and institutional support

What is next for Open Universe?

hybrid format, based in Rio.

the training and help shape up the event.

participation of all UN Member States and

A first capacity building event is being planned for next year, in

- Partnership with various data / tool providers will be called to join
- The event will be done under the auspices of UNOOSA and cofunded by the BR Ministry of Science, and open to the inputs and

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

