Powering Source of Gamma Ray Burst Associated Supernovae: Spin-down Millisecond Magnetar?

Amit Kumar University of Warwick, UK

2nd Astro-COLIBRI multi-messenger astrophysics workshop Institut Pascal, Paris-Saclay, France 20-24 Nov 2023

Formation of GRB and SN: Fireball Model

GRB 980425/SN 1998bw

The era of GRB-SNe connections started with the closest LGRB 980425 and broad lined SN 1998bw (at z = 0.00866).

- GRB 980425 appeared to have a low isotropic γ-ray luminosity relative to those of other cosmological LGRBs.
 - Five years later, the discovery of GRB 030329 with a bright optical afterglow exhibited an isotropic y-ray luminosity consistent with other cosmological LGRBs and associated SN 2003dh spectroscopic presented signatures similar to that of 1998bw, SN confirmed **GRB-SNe** association..

GRB-SNe connections

- To date, more than 50 LGRBs have been discovered with signatures of associated SNe and provide direct evidences of GRB-SNe connections.
- GRB-SNe light curves consist contributions from the Afterglow + SN + Host

Light-curve

Spectral comparison

Greiner et al. 2015

8

Radioactive Decay

Pair-Instability SN

Spin-down Magnetar

CSM Interaction

Hybrid

Margalit et al. 2018

- Spin-down of a millisecond magnetar.
- Powered by rotation, energy extracted via magnetic field.

Power ~ B^2/P^4 Timescale ~ P^2/B^2

Pair-Instability SN

Spin-down Magnetar

CSM Interaction

Hybrid

- Mass loss and build-up of circumstellar matter around the massive stars are generic features of stellar evolution.
- SN ejecta collides & violently interacts with the CSM.
- Interaction with enshrouded CSM can boost the luminosity of SNe.
- Light curves of Type I SNe generally lack interaction signatures in their spectra.

Radioactive Decay

Pair-Instability SN

Spin-down Magnetar

CSM Interaction

Hybrid

Chatzopoulous et al. 2016

• Massively, rapidly rotating CCSN interacting with the CSM

Radioactive Decay

• Multiple CSM interactions of a H-poor ejecta

Pair-Instability SN

Spin-down Magnetar

CSM Interaction

Hybrid

Interaction of a radioactively powered H-poor ejecta with a CSM

Chatzopoulous et al. 2016

Magnetar as powering source of GRB-SNe

Light-curve modelling of SNe

 10^{5}

Ib Pandey & Kumar et al., 2021

• Analytical light-curve modelling insinuates a spin-down millisecond magnetar as a likely powering source for SN 2012au, which is also explain its other photometric and spectral properties. GRB+SN Zhang et al., 2022

• The best fit of the multiwavelength double-peaked light curves of SN 2006aj by using the model including a magnetar wind-driven significant shock breakout emission and a magnetar-aided supernova emission SLSN Dong et al., 2023

Magnetar Flare-driven Bumpy Declining Light Curves in Hydrogen-poor Superluminous Supernova 2018kyt. Multiwavelength observations (dots) with the best magnetar-powered fitting (solid line) for SLSN 2018kyt.

Light-curve modelling of GRB-SNe:

Cano et al., 2016

Lian et al., 2022

- Presented an analytical model that considers energy arising from a magnetar central engine for 7 GRB+SNe.
- Successfully described all phases of ULGRB 111209A/SN 2011kl, from the early afterglow to the later SN.
- Used the multi-band broken power-law plus Ni-56 model to fit the multi-band light curves of three afterglows and SNe.
- They found that the model can account for the multi-band light curves of the three discussed GRB+SNe.

Lin et al., 2020

•

- Presented light-curve modelling of SLSN 2011kl using the Blandford & Payne (Blandford & Payne 1982) mechanism.
- The light curve is well explained by the magnetar model.

Light-curve modelling of GRB-SNe:

Kumar et al. 2022, New Astronomy, 97, 101889 Time since explosion (days)

SN	Type	M_{ej}	v_{exp}	P_i	В	R_0	Best-fit
	16262-673	(M_{\odot})	(10^3 km s^{-1})	(ms)	(10^{14} G)	(10^{13} cm)	model
SN 2017htp	Ic BL	2.5 - 6.3	13.5 - 15.4	12.9 ± 0.1	8.7 ± 0.3	0.01 - 0.11	RD/MAG/CSM
SN 2017iuk	Ic BL	$5.6~\pm~0.1$	29.0 ± 3.5	26.4 ± 0.1	18.4 ± 0.3	$0.04~\pm~0.02$	MAG
SLSN 2011kl	SLSN I	3-5.8	14.4 - 35	$11.9~\pm~0.1$	6.5 ± 0.1	0.01 - 0.13	MAG/CSM

<u>Magnetar as a central engine:</u>

Kumar et al. 2023, in preparation

- □ The present comparison of magnetic fields and the initial spin periods of GRB-SNe with those of SLSNe and Long and short GRBs shows that GRB-SNe seem to consist of a different parameter space. It also shows that magnetars with different B and Pi values can govern different types of transients.
- The luminosity of a magnetar-powered SN is directly related to how long the central engine is active, where central engines with longer durations give rise to brighter SNe.

GRAVITATIONAL-WAVE OPTICAL TRANSIENT OBSERVER

https://goto-observatory.org

Slides courtesy: Prof Danny Steeghs

GOTO network

Autonomous telescope arrays

Full node = $16 \times D=40$ cm covering 80 deg^2 (~ 10,000 sqr.deg / night)

Two antipodal sites

Sky survey patrol mode Responsive mode

Steeghs et al. (2022)

GOTO Prototype Performance

- 4x40cm f/2.5 unit telescopes (UT)
- 8176 x 6132 pixels, 1.25"/pixel, 2.8 deg x 2.1 deg
- FLI MicroLine (50 Mpixel CCD)
- 5-slot filterwheel (currently Baader LRGBC)
- Total FoV (4 UT): ~20 sq. deg.
- L ~ 19.8 mag in 60 s

- EM searches straddle GW detection and follow-up with our fleet of telescopes and satellites
- Needs low-latency end-to-end dataflow to permit timely alerting and triggering of follow-up
- Automate as much as possible, but needs to be robust

Science with GOTO

z

WARWICK

GW triggered & blind kilo-nova searches Luminous transients in the SN arena

Fast transients

TDEs

New AGN

GRB triggers, particularly short

Neutrinos from IceCube

Pulsar binaries via Fermi cross-matches Blazar monitoring with CTA link Galactic variables and compact binaries Moving objects

Rapid discovery allows rapid follow-up

Spectroscopically target early stages Rare bright events offer key insights

Public engagement

Thank you!

Kilonova Seekers

Tom Killestein, Lisa Kelsey, Laura Nuttall, Joe Lyman, Coleman Krawczyk

#knseekers #knseekers-alerts

Inviting the public on a real-time journey of scientific discovery

Image credit: D. Player/STScl/NASA/ESA

kilonova-seekers.org

GOTO Science Meeting 2023