Powering Source of Gamma Ray Burst Associated
Supernovae: Spin-down Millisecond Magnetar?
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Formation of GRB and SN: Fireball Model
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GRB 980425/SN 1998bw

The era of GRB-SNe

10 connections started with the
closest LGRB 980425 and
broad lined SN 1998bw (at z =
0.00866).

e GRB 980425 appeared to have
a low isotropic y-ray
luminosity relative to those of
other cosmological LGRBs.
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e Five years later, the discovery
of GRB 030329 with a bright
optical afterglow exhibited an
isotropic y-ray luminosity
consistent with other
cosmological LGRBs and
associated SN 2003dh
presented spectroscopic
signatures similar to that of

9 0 SN 1998bw, confirmed
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GRB-SNe connections

To date, more than 50 LGRBs have
been discovered with signatures of
associated SNe and provide direct
evidences of GRB-SNe connections.

GRB-SNe light curves consist
contributions from the Afterglow +
SN + Host
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GRB-SN bumps
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Bolometric LCs of
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Light-curve & Spectral comparison
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Powering Mechanisms of SNe
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jet-ejecta
interface wind

Spin-down Magnetar

Margalit et al. 2018

e Spin-down of a millisecond magnetar.
e Powered by rotation, energy extracted via magnetic field.

Power ~ B%/P*
Timescale ~ P?/B2



Powering Mechanisms of SNe

e Mass loss and build-up of
circumstellar matter around the
massive stars are generic features
of stellar evolution.

e SN gjecta collides & violently
interacts with the CSM.

e Interaction with enshrouded CSM
can boost the luminosity of SNe.

e Light curves of Type I SNe C SM Interaction

generally lack interaction
signatures in their spectra.

Chatzopoulous et al. 2016



Powering Mechanisms of SNe

e Massively, rapidly rotating CCSN
interacting with the CSM

PPISN remnant star

e Multiple CSM interactions of a H-poor
gjecta

e Interaction of a radioactively powered
H-poor ejecta with a CSM

Hybrid

Chatzopoulous et al. 2016



T T jet-ejecta
interface wind

Magnetar as powering

source of GRB-SNe

Margalit et al. 2018



SN 2012au

#2/DOF = 0.10

Ib
Pandey & Kumar et al,, 2021

Analytical light-curve modelling
insinuates a spin-down
millisecond magnetar as a likely
powering source for SN 2012au,
which is also explain its other
photometric and spectral
properties.
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GRB+SN
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The best fit of the multiwavelength
double-peaked light curves of SN

2006aj by wusing the model
including a magnetar wind-driven
significant shock breakout

emission and a magnetar-aided
supernova emission

Light-curve modelling of SNe

—— MAG model

Apparent magnitude
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Magnetar Flare-driven Bumpy
Declining Light Curves in

Hydrogen-poor Superluminous
Supernova 2018kyt.
Multiwavelength  observations

(dots) with the best
magnetar-powered fitting (solid
line) for SLSN 2018kyt.



Light-curve modelling of GRB-SNe:

ULGRB 111209A

Cano et al., 2016

Presented an analytical model
that considers energy arising
from a magnetar central engine
for 7 GRB+SNe.

Successfully described all phases
of ULGRB 111209A/SN 2011K], from
the early afterglow to the later SN.
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GRB011121-SN2001ke

Absolute magnitude

o
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Lian et al., 2022

Used the multi-band broken
power-law plus Ni-56 model to fit
the multi-band light curves of three
afterglows and SNe.

They found that the model can
account for the multi-band light
curves of the three discussed
GRB+SNe.
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Lin et al.,, 2020

Presented light-curve
modelling of SLSN 2011kl
using the Blandford & Payne
(Blandford & Payne 1982)
mechanism.

The light curve is well
explained by the magnetar
model.



Light-curve modelling of GRB-SNe:
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Manetar as a Centra]_ enine: Kumar et al. 2023, in preparation
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The present comparison of magnetic fields and the initial spin periods of GRB-SNe with those of SLSNe and
Long and short GRBs shows that GRB-SNe seem to consist of a different parameter space. It also shows that
magnetars with different B and Pi values can govern different types of transients.

The luminosity of a magnetar-powered SN is directly related to how long the central engine is active, where
central engines with longer durations give rise to brighter SNe.
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GOTO network ' '
WARWICK

Autonomous telescope arrays

GOTO North, La Palma

Full node = 16 x D=40cm covering 80 deg?
(-~ 10,000 sqr.deg / night )

Two antipodal sites

Sky survey patrol mode
Responsive mode

Steeghs et al. (2022)
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Throughput

100%

GOTO Prototype Performance W
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Steeghs et al. (2022) L-band ~ g+r

\WARWICK

.

‘FoV of single UT

4x40cm /2.5 unit telescopes (UT)

8176 x 6132 pixels, 1.25"/pixel, 2.8 deg x 2.1 deg
FLI MicroLine (50 Mpixel CCD)

5-slot filterwheel (currently Baader LRGBC)
Total FoV (4 UT): ~20 sq. deg.

L ~19.8magin60s



Rapid localisation to enable foIIow-upW
WARWICK

* EM searches straddle GW detection and follow-up with our fleet of telescopes and
satellites

* Needs low-latency end-to-end dataflow to permit timely alerting and triggering of
follow-up

* Automate as much as possible, but needs to be robust

Schedule

follow-up
observations
e . Z
Pipeline creates s [} 7

Transient occurs difference image

I i
Survey observes D D D model

transient on sky Human decides
transient is
interesting

~minutes-days minutes

seconds minutes

courtesy Joe Lyman



Science with GOTO

GW triggered & blind kilo-nova searches
Luminous transients in the SN arena
Fast transients

TDEs

New AGN

GRB triggers, particularly short
Neutrinos from IceCube

Pulsar binaries via Fermi cross-matches
Blazar monitoring with CTA link

Galactic variables and compact binaries

Moving objects

Rapid discovery allows rapid follow-up
Spectroscopically target early stages

Rare bright events offer key insights
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Public engagement
WARWICK

Kilonova aSH0 Samss
Seekers

Tom Killestein, Lisa Kelsey, Laura
Nuttall, Joe Lyman, Coleman Krawczyk

#k k oge .
i i T Inviting t.he pybhc on a

real-time journey of
scientific discovery

Image credit: D. Player/STSclI/NASA/ESA
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