

National Science Challenge Initiatives Center for the Gravitational-Wave Universe

Observing Strategy for Electromagnetic Follow-up of Gravitational-Wave Events

Elahe Khalouei

In collaboration with: Myungshin Im, Giuseppe Greco, Michael W. Coughlin, Gregory S. H. Paek, Hyung Mok Lee

Research Center for Gravitational-Wave Universe (GWUniverse) Seoul National University

Challenges to EM Observation:

1- Large GW sky localization for some GW events: We should survey a wide region of sky to catch the EM counterparts Typically, there is a large sky localization uncertainty

The localization of GW190425. Credit: Ben Farr/LIGO.

https://multi-messenger.asterics2020.eu/Documents/presentations/ Greco_Giuseppe.pdf

We were lucky for GW170817

Challenges to EM Observation:

2- The EM signals are faint and become fainter fast

AT2017gfo is bright kilonova peaked at the magnitude of 17 in the I band

it is $\frac{1}{10}$ to $\frac{1}{100}$ the brightness of a typical supernova

https://arxiv.org/pdf/2307.09511.pdf

LSST r LSST z LSST y Roman F062 Roman F087 Roman F106 Roman F129 Roman F158 Roman F184 Roman F213 Roman F146 ZTF r limit 300s LSST r limit 30s F129 limit 55s F129 limit 1hr

To overcome this challenge, we propose optimal observing strategies for GW follow-up observation

We classify the telescopes in two categories based on the size of FOV.

Galaxy-Targeting Strategy: NARROW FIELD TELESCOPES (FOV<1 deg^2). Single galaxy per pointing

Tiling Strategy:

WIDE FIELD TELESCOPES (FOV>= 1 deg^2) A few galaxies per single pointing

Credit: ChatGPT4

Search strategy for narrow field telescopes

Galaxy-Targeting Method: Galaxy cross-matching within volume:

- We find the galaxies that locate in the 90% GW (within volume).
- We used the GLADE+ Galaxy Catalog.

Singer L. P., et al., 2016b, Astrophys. J. Lett., 829, L15

We ranked the host galaxy candidates based on the:

Mass (Assumption: BNS merger rate ~ M*)

Probability of GW source at the position of each galaxy in the 3D GW sky map

Singer L. P., et al., 2016b, Astrophys. J. Lett., 829, L15 Arcavi I., et al., 2017b, Astrophys. J. Lett., 848, L33

Search strategy for wide field telescopes

Tiling Strategy Process to generate the tiling patterns for a telescope:

• Step 1: Create sky grid

Generate Points on a unit sphere in an optimum way.

NOTE:

The points show the center of a telescope FOV for portions of the sky that are observable with the telescope.

<u>https://aladin.cds.unistra.fr/</u> https://dorado-scheduling.readthedocs.io/en/latest/background.html

1001 - 1001

Process to generate the tiling patterns for a telescope:

• Step 2: Create tiling

patterns

Based on the shape and size of telescope FOV, we generate tiles at the position of generated sky grids.

***** To determine the telescope pointings for observation, we create patterns of tiles that span the two-dimensional sky localization of gravitational waves (GW) and potential host galaxies identified through a galaxy-targeting method. Then we ranked the tiles based on the:

<u>1-2-D GW sky localization at each tile</u>

<u>2- Characteristic of host galaxy candidates such as mass, 3D sky</u> localization of GW at position of each galaxy

sky localization(90%)

Greco G., et al., 2022, Astronomy and Computing, 39, 100547

Number of Tiles Distribution (O4, $\Omega_{90\%} > 100 \text{ deg}^2$)

Example1: Well-Localized Event

area(90)=13.7 Volume(90)=0.15* 10^5 Mpc^3

Num_tiles=26

Ranked_2D GW localization

Ranked based on the characteristic of host galaxy candidates:

Mass=13 Probability density=12

0	n	=	1	0
$\mathbf{}$				$\mathbf{}$

Example 2: Wide-Localized Event

Case Study for an Electromagnetic Observing Strategy Using a Ground-Based Network Telescope (7-DT)

Optimal Observing Method using Ranking Method

7-DIMENSIONAL TELESCOPE

% 7DT = x (RA) + y (Dec) + z (distance) + flux + v (radial vel.) + λ (wavelength) + t (time)

*** FOV: 1.2 – 24 deg²**

* Limiting mag: ~21 AB at 3 min (5- σ , point source)

*40-medium-band (25nm width, from 400 nm to 900 nm) \rightarrow low res spectra

*Sloan Broad-band u-, g-, r-, i-, and z-bands

source)

A conceptual view of 7DT (Image Credit : Mankeun Jeong & Minhee Hyun)

Site: Current Status

Credit: Ji Hoon Kim

Different Search modes for 7DT

• Deep Observing Mode : FOV: 1.2 deg²

• Wide Observing Mode: FOV: 24 deg²

Which observing mode we should **Apply?** It is depend on number of tiling that we Should observed.

Credit: ChatGPT4

The total number of tiles for the event is 26. The host galaxy of binary merger located at the tile with rank 2

00^m

We review observing strategies for

Narrow field telescopes: Galaxy-Targeting Method **Wide field Telescopes:** Tiling observation

Implementing the ranking method can expedite the identification of the EM counterpart

GECKOrchestrator code

Credit: ChatGPT4

0	•	
_	main	_
	man	
r		

Л	E-Khalouei Update README.md		3e8350e on Jun 1
	main-codes	Add files via upload	
	tutorial for each code	Add files via upload	
Ľ	.gitignore	Initial commit	
Ľ	README.md	Update README.md	

 \equiv README.md

GECKOrchestrator

Ongoing efforts on Gravitational-wave Follow-up with Korean Observatories (GECKO and 7-DIMENSIONAL TELESCOPE)

<u>GECKOrchestrator</u> is a Python tool for electromagnetic follow-up of gravitational wave events. This repository contains the code for GECKOrchestrator, written in a general format that can be easily adapted to work with any telescope.

This repository developed for target of opportunity observation coordinate for 7-Dimensional telescope (7-DT)

The code can:

- Creat MOC map of telescope footprints
- Encode the position of galaxies in a galaxy catalog to sky footprint telescope
- Galaxy-cross matching with 3D gravitational wave (GW) skymap
- Generate the tiling pattern based on the telescope configuration for target of opportunity observations of GW events
- Ranked the generated tiles based on the 2-D GW sky localization and the characterestic of host galaxy candidates (3-D location and mass) at the same time

Tutorial:

A tutorial about how to work with GECKOrchestrator is given in "<u>tutorial for each code</u>" folder. You can find the input file for the toturial in the <u>MEGA</u>. You can find some explanations about the code, input parameters, and files in main code structure.

Go to file