Recent progress in nuclear Green's function theory

Vittorio Somà

IRFU, CEA \& Université Paris-Saclay

A journey into nuclear structure and reaction theory
ED PHENIICS, 13 June 2023

Ab initio nuclear many-body problem

\Rightarrow Nuclei described as a collection of interacting protons and neutrons
Goals

- Understand how nucleons organise themselves into nuclei starting from basic interactions (\leftarrow QCD)
- Provide reliable predictions for nuclear observables (\rightarrow applications)

Solve A-body Schrödinger equation (for any $A=Z+N$)
A-body wave function
many-nucleon Hamiltonian

A-body energies of ground and excited states

1. Model interactions between nucleons

Ab initio nuclear many-body problem

This lecture:

one particular many-body technique

Q

1. Model interactions between nucleons
2. Solve many-body Schrödinger eq.

Nuclear Hamiltonian

- Model inter-nucleon forces via effective field theories
- Systematic framework to build $A \mathrm{~N}$ interactions ($A=2,3, \ldots$)
\circ Chiral EFT \rightarrow Nucleons and pions as explicit d.o.f.
[Weinberg 1990-91, Ordóñez \& van Kolck 1992,]
\circ Truncate expansion \rightarrow Error assigned to each order

\rightarrow Alternative power counting being investigated

$$
\mathrm{LO} \rightarrow \mathrm{NLO} \rightarrow \mathrm{~N} 2 \mathrm{LO} \rightarrow \mathrm{~N} 3 \mathrm{LO}
$$

Pre-processing of the nuclear Hamiltonian

© Interactions usually represented in the space of relative nucleon momenta

\odot Large off-diagonal matrix elements generate strong correlations between low \& high momenta

- Usually referred to as short-range correlations in the many-body wave function
\rightarrow Traditionally linked to "hard core" of one-boson exchange potentials
\rightarrow Weaker but present in modern chiral interactions
\circ Short distance / high momenta / high energy \rightarrow large Hilbert space needed

A matter of resolution

Pre-processing of the nuclear Hamiltonian

- Idea: use unitary transformations on H to suppress these correlations

\checkmark Decouple low- \& high-momenta
\checkmark Can work in small Hilbert space
\checkmark Observables unchanged!

$$
\begin{aligned}
U^{\dagger} H U U^{\dagger}|\Psi\rangle & =E U^{\dagger}|\Psi\rangle \\
\vdots \tilde{H}|\tilde{\Psi}\rangle & =E|\tilde{\Psi}\rangle
\end{aligned}
$$

x Many-body forces generated
\odot In practice: use similarity renormalisation group (SRG) to transform H

- Transformation governed by one continuous parameter (denoted λ or α)
- Unitarity of the transformation depends on neglected many-body forces

Pre-processing of the nuclear Hamiltonian

- Idea: use unitary transformations on H to suppress these correlations

\checkmark Decouple low- \& high-momenta
\checkmark Can work in small Hilbert space
\checkmark Observables unchanged!

$$
\begin{aligned}
U^{\dagger} H U U^{\dagger}|\Psi\rangle & =E U^{\dagger}|\Psi\rangle \\
\vdots \tilde{H}|\tilde{\Psi}\rangle & =E|\tilde{\Psi}\rangle
\end{aligned}
$$

x Many-body forces generated
\odot In practice: use similarity renormalisation group (SRG) to transform H

- Transformation governed by one continuous parameter (denoted λ or α)
- Unitarity of the transformation depends on neglected many-body forces

Pre-processing of the nuclear Hamiltonian

- Idea: use unitary transformations on H to suppress these correlations

\checkmark Decouple low- \& high-momenta
\checkmark Can work in small Hilbert space
\checkmark Observables unchanged!

$$
\begin{aligned}
U^{\dagger} H U U^{\dagger}|\Psi\rangle & =E U^{\dagger}|\Psi\rangle \\
\vdots \tilde{H}|\tilde{\Psi}\rangle & =E|\tilde{\Psi}\rangle
\end{aligned}
$$

x Many-body forces generated
\odot In practice: use similarity renormalisation group (SRG) to transform H

- Transformation governed by one continuous parameter (denoted λ or α)
- Unitarity of the transformation depends on neglected many-body forces

Many-body approaches

Exact methods

- Aim to solve the A-body Schrödinger eq. virtually exactly
\Rightarrow Coordinate space \rightarrow Quantum Monte Carlo, nuclear lattice EFT, \ldots
\Rightarrow Configuration space \rightarrow FCI, No-core shell model,..

Exact methods

© Example: full diagonalisation of the Hamiltonian matrix in configuration space (NCSM)

$$
\left|\Psi_{k}(D)\right\rangle=\sum_{i=1}^{D} C_{i}^{(k)}\left|\Phi_{i}\right\rangle \quad \Rightarrow \quad \sum_{i=1}^{D} \underbrace{\left\langle\Phi_{j}\right| H\left|\Phi_{i}\right\rangle}_{\equiv H_{j i}} C_{i}^{(k)}=E_{k} \sum_{i=1}^{D} C_{i}^{(k)} \underbrace{\left\langle\Phi_{j} \mid \Phi_{i}\right\rangle}_{=\delta_{i j}}
$$

$\mathrm{D}=\mathrm{D}\left(\mathrm{N}_{\max }\right)$ configurations

800 TB aggregate memory
\Rightarrow Computational limits are quickly reached

Many-body approaches

© Exact methods

Exponential scaling

- Aim to solve the A-body Schrödinger eq. virtually exactly
\Rightarrow Coordinate space \rightarrow Quantum Monte Carlo, nuclear lattice EFT, ...
\Rightarrow Configuration space \rightarrow FCI, No-core shell model, ...
© Correlation-expansion methods
Polynomial scaling
- Splitting $H=H_{0}+H_{1} \quad \rightarrow$ Reference state $\left|\phi_{0}\right\rangle$
- Expand $\left|\Psi_{0}^{A}\right\rangle=\Omega_{0}\left|\phi_{0}\right\rangle \approx\left|\phi_{0}\right\rangle+\left|\phi_{1}\right\rangle+\left|\phi_{2}\right\rangle+\ldots$

Cost reduced from e^{N} to N^{α} with $\alpha \geq 4$

$$
\begin{aligned}
& \text { Expansion in terms of particle-hole excitations }
\end{aligned}
$$

> Ref
> 1p1h
> 2p2h
> 3p3h

- However: no small expansion parameter
\Rightarrow Convergence assessed via benchmarks and / or computing higher orders
ᄃ) Variety of methods essential (benchmarks, observables, interpretation, ...)

Ab initio nuclear chart

[Figure: B. Bally]

Ab initio nuclear chart

[Figure: B. Bally]

Ab initio nuclear chart

\circ Progress thanks to
[Figure: B. Bally]

Ab initio nuclear chart

- Limitations because of
[Figure: B. Bally]

Applicability of many-body techniques

Need for optimisation, adaptation to new architectures, ..

Semantics \& history

- Many-body Green's function theory
\rightarrow Set of techniques originated in QFT and then imported to the many-body problem
๑ Few names for the same thing
- Green's function
- Propagator
- Correlation function
\rightarrow Defined for one-, two-, ... up to A-body
\odot Applicable to different many-body systems: crystals, molecules, atoms, atomic nuclei, ...
© Self-consistent Green's functions: many-body GF with dressed propagators (see later)
๑ Many-body Green's functions are not Green's function Monte Carlo
- Some ideas are old, but ab initio implementations are recent
- Late 1950s, 1960s: import of concepts from QFT \& development of many-body formalism
- 1970s \rightarrow today: technical developments \& applications in several fields of physics
$-2000 s \rightarrow$ today: implementation as an ab initio method in nuclear physics

Many-body Green's functions in one slide

A-body wave function

A-body Schrödinger equation

$$
H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle
$$

Green's functions

$$
\begin{aligned}
\mathrm{i} g_{\alpha \beta}\left(t_{\alpha}, t_{\beta}\right) & \equiv\left\langle\Psi_{0}^{A}\right| \mathcal{T}\left[a_{\alpha}\left(t_{\alpha}\right) a_{\beta}^{\dagger}\left(t_{\beta}\right)\right]\left|\Psi_{0}^{A}\right\rangle \\
\mathrm{i} g_{\alpha \gamma \beta \delta}^{4-\mathrm{pt}}\left(t_{\alpha}, t_{\gamma}, t_{\beta}, t_{\delta}\right) & \equiv\left\langle\Psi_{0}^{A}\right| \mathcal{T}\left[a_{\gamma}\left(t_{\gamma}\right) a_{\alpha}\left(t_{\alpha}\right) a_{\beta}^{\dagger}\left(t_{\beta}\right) a_{\delta}^{\dagger}\left(t_{\delta}\right)\right]\left|\Psi_{0}^{A}\right\rangle
\end{aligned}
$$

$---\cdots \rightarrow \quad$ Martin-Schwinger equations

$$
\begin{aligned}
g_{\alpha \beta}(\omega)=g_{0 \alpha \beta}(\omega)- & \sum_{\gamma \delta} g_{0 \alpha \gamma}(\omega) u_{\gamma \delta} g_{\delta \beta}(\omega)-\frac{1}{2} \sum_{\substack{\gamma \epsilon}} g_{0 \alpha \gamma}(\omega) v_{\gamma \epsilon, \delta \mu} \\
& \int \frac{d \omega_{1}}{2 \pi} \int \frac{\sigma^{c}}{2 \pi} g_{\delta \mu, \beta \epsilon}^{4-\mathrm{pt}}\left(\omega_{1}, \omega_{2} ; \omega, \omega_{1}+\omega_{2}-\omega\right)
\end{aligned}
$$

Observables: exp. values

$$
\mathrm{O}=\left\langle\Psi_{0}^{A}\right| O\left|\Psi_{0}^{A}\right\rangle
$$

Many-body Green's functions in one slide

A-body wave function
$\left|\Psi_{k}^{A}\right\rangle$

A-body Schrödinger equation

$$
H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle
$$

\qquad

Green's functions

$$
\begin{aligned}
\mathrm{i} g_{\alpha \beta}\left(t_{\alpha}, t_{\beta}\right) & \equiv\left\langle\Psi_{0}^{A}\right| \mathcal{T}\left[a_{\alpha}\left(t_{\alpha}\right) a_{\beta}^{\dagger}\left(t_{\beta}\right)\right]\left|\Psi_{0}^{A}\right\rangle \\
\mathrm{i} g_{\alpha \gamma \beta \delta}^{4-\mathrm{pt}}\left(t_{\alpha}, t_{\gamma}, t_{\beta}, t_{\delta}\right) & \equiv\left\langle\Psi_{0}^{A}\right| \mathcal{T}\left[a_{\gamma}\left(t_{\gamma}\right) a_{\alpha}\left(t_{\alpha}\right) a_{\beta}^{\dagger}\left(t_{\beta}\right) a_{\delta}^{\dagger}\left(t_{\delta}\right)\right]\left|\Psi_{0}^{A}\right\rangle
\end{aligned}
$$

Dyson equation

$$
g_{\alpha \beta}(\omega)=g_{0 \alpha \beta}(\omega)+\sum_{\gamma \delta} g_{0 \alpha \gamma}(\omega) \Sigma_{\gamma \delta}^{\star}(\omega) g_{\delta \beta}(\omega)
$$

Self-energy expansion \rightarrow Many-body approximations

Observables: exp. values
$\mathrm{O}=\left\langle\Psi_{0}^{A}\right| O\left|\Psi_{0}^{A}\right\rangle$

Observables: convolutions with GFs

$$
\left\langle\Psi_{0}^{A}\right| O^{1 \mathrm{~B}}\left|\Psi_{0}^{A}\right\rangle=\sum_{\alpha \beta} \int \frac{d \omega}{2 \pi i} g_{\beta \alpha}(\omega) o_{\alpha \beta}
$$

Koltun sum rule $\quad E_{0}=\left\langle\Psi_{0}^{A}\right| H\left|\Psi_{0}^{A}\right\rangle=\frac{1}{2} \sum_{\alpha \beta} \int \frac{d \omega}{2 \pi i} g_{\beta \alpha}(\omega)\left[t_{\alpha \beta}+\omega \delta_{\alpha \beta}\right]$

Many facets of Green's functions

Mathematical object

$$
\mathrm{i} g_{\alpha \beta}\left(t_{\alpha}, t_{\beta}\right) \equiv\left\langle\Psi_{0}^{A}\right| \mathcal{T}\left[a_{\alpha}\left(t_{\alpha}\right) a_{\beta}^{\dagger}\left(t_{\beta}\right)\right]\left|\Psi_{0}^{A}\right\rangle
$$

Green's functions in maths

- In mathematics: solution of an inhomogeneous differential equation

$$
[z-L(\boldsymbol{r})] G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right)=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)
$$

$\odot G F$ contains information about eigenstates \& eigenvalues of L

$$
G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right)=\langle\boldsymbol{r}| \frac{1}{z-L}\left[\sum_{n}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|\right]\left|\boldsymbol{r}^{\prime}\right\rangle=\sum_{n}\langle\boldsymbol{r}| \frac{1}{z-L}\left|\phi_{n}\right\rangle\left\langle\phi_{n} \mid \boldsymbol{r}^{\prime}\right\rangle=\sum_{n} \frac{\left\langle\boldsymbol{r} \mid \phi_{n}\right\rangle\left\langle\phi_{n} \mid \boldsymbol{r}^{\prime}\right\rangle}{z-\lambda_{n}}
$$

more generally

$$
\underbrace{G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right)=\sum_{n}^{\frac{\sum_{n}(\boldsymbol{r}) \phi_{n}^{*}\left(\boldsymbol{r}^{\prime}\right)}{z-\lambda_{n}}+\int \mathrm{d} c \frac{\phi_{c}(\boldsymbol{r}) \phi_{c}^{*}\left(\boldsymbol{r}^{\prime}\right)}{z-\lambda_{c}}} \underbrace{}_{\text {continuous spectrum }}}_{\text {discrete spectrum }}
$$

\odot Substituting $L(\boldsymbol{r}) \rightarrow \mathcal{H}(\boldsymbol{r}), z \rightarrow E$ with $\mathcal{H}(\boldsymbol{r})$ a one-particle Hamiltonian

$$
[E-\mathcal{H}(\boldsymbol{r})] G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; E\right)=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)
$$

From one to many

\odot By introducing second-quantised annihilation \& creation operators one can express

$$
G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right)=\sum_{n} \frac{\left\langle\boldsymbol{r} \mid \phi_{n}\right\rangle\left\langle\phi_{n} \mid \boldsymbol{r}^{\prime}\right\rangle}{z-E_{n}}=\sum_{n} \frac{\langle 0| a_{\boldsymbol{r}}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right| a_{r}^{\dagger}|0\rangle}{z-E_{n}}
$$

$G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right)=\sum_{\mu} \frac{\left\langle\Psi_{0}^{N}\right| a_{\boldsymbol{r}}\left|\Psi_{\mu}^{N+1}\right\rangle\left\langle\Psi_{\mu}^{N+1}\right| a_{r}^{\dagger}\left|\Psi_{0}^{N}\right\rangle}{z-E_{\mu}^{+}}+\sum_{\nu} \frac{\left.\left\langle\Psi_{0}^{N}\right| a_{\boldsymbol{r}^{\prime}}^{\dagger}\left|\Psi_{\nu}^{N-1}\right\rangle\left\langle\Psi_{\nu}^{N-1}\right| a| | \Psi_{0}^{N}\right\rangle}{z-E_{\nu}^{-}}$
$\xrightarrow{\prime \prime} \rightarrow$ two terms: addition, but also removal of a particle
with

$$
\begin{aligned}
& \left|\Psi_{0}^{N}\right\rangle \\
& \left|\Psi_{\kappa}^{N \pm 1}\right\rangle \\
& E_{\mu}^{+} \equiv E_{\mu}^{N+1}-E_{0}^{N} \longrightarrow \text { (Exact) ground state of } N \text {-body system } \\
& E_{\nu}^{-} \equiv E_{0}^{N}-E_{\nu}^{N-1} \longrightarrow \text {-excited state of }(N \pm 1 \text {)-body system } \\
& \text { one-particle (addition) separation energy } \\
& \text { one-particle (removal) separation energy }
\end{aligned}
$$

Many facets of Green's functions

Källén-Lehmann (or spectral) representation

© Start from general definition

$$
G_{a b}\left(t, t^{\prime}\right) \equiv-i\left\langle\Psi_{0}^{A}\right| \mathcal{T}\left[a_{a}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right]\left|\Psi_{0}^{A}\right\rangle
$$

For a time-independent Hamiltonian

$$
G_{a b}\left(t, t^{\prime}\right)=G_{a b}\left(t-t^{\prime}\right) \quad \xrightarrow[\text { Fourier transform }]{\longrightarrow} \quad G_{a b}(z)
$$

Use integral representation of Heaviside function

$$
\Theta(t)=\lim _{\eta \rightarrow 0^{+}} \frac{1}{2 \pi i} \int_{-\infty}^{+\infty} d z \frac{e^{i t z}}{z-i \eta}
$$

$$
G_{a b}(z)=\sum_{\mu} \frac{\left\langle\Psi_{0}^{A}\right| a_{a}\left|\Psi_{\mu}^{A+1}\right\rangle\left\langle\Psi_{\mu}^{A+1}\right| a_{b}^{\dagger}\left|\Psi_{0}^{A}\right\rangle}{z-E_{\mu}^{+}+i \eta}+\sum_{\nu} \frac{\left\langle\Psi_{0}^{A}\right| a_{b}^{\dagger}\left|\Psi_{\nu}^{A-1}\right\rangle\left\langle\Psi_{\nu}^{A-1}\right| a_{a}\left|\Psi_{0}^{A}\right\rangle}{z-E_{\nu}^{-}-i \eta}
$$

Many facets of Green's functions

Propagator

○ General definition

(Exact) ground state of N-body system
$\xrightarrow{\prime} \rightarrow$ It describes the process of adding a particle at time t^{\prime} and removing it at time t (or viceversa if $t^{\prime}>t$)
${ }^{\prime \prime} \rightarrow$ Hence the equivalent name of single-particle propagator

Many facets of Green's functions

Green's functions as density matrices

○ Many-body GFs can be easily related to many-body density matrices

$$
\begin{aligned}
& \rho_{\delta \gamma} \equiv \quad\left\langle\Psi_{0}^{A}\right| a_{\gamma}^{\dagger} a_{\delta}\left|\Psi_{0}^{A}\right\rangle \quad=-\mathrm{i} g_{\delta \gamma}^{2-\mathrm{pt}}\left(t, t^{+}\right), \\
& \rho_{\delta \eta \gamma \epsilon} \equiv\left\langle\Psi_{0}^{A}\right| a_{\gamma}^{\dagger} a_{\epsilon}^{\dagger} a_{\eta} a_{\delta}\left|\Psi_{0}^{A}\right\rangle \quad=\mathrm{i} g_{\delta \eta \gamma \epsilon}^{4-\mathrm{pt}}\left(t, t, t^{+}, t^{+}\right), \\
& \rho_{\delta \eta \xi \gamma \epsilon \zeta} \equiv\left\langle\Psi_{0}^{A}\right| a_{\gamma}^{\dagger} a_{\epsilon}^{\dagger} a_{\zeta}^{\dagger} a_{\xi} a_{\eta} a_{\delta}\left|\Psi_{0}^{A}\right\rangle=-\mathrm{i} g_{\delta \eta \xi \gamma \epsilon \zeta}^{6-\mathrm{pt}}\left(t, t, t, t^{+}, t^{+}, t^{+}\right)
\end{aligned}
$$

© Correspondingly, observables can be computed as

$$
\begin{aligned}
\left\langle\Psi_{0}^{A}\right| O^{1 B}\left|\Psi_{0}^{A}\right\rangle & =\sum_{\delta \gamma} o_{\delta \gamma} \rho_{\gamma \delta} \\
\left\langle\Psi_{0}^{A}\right| O^{2 B}\left|\Psi_{0}^{A}\right\rangle & =\sum_{\substack{\delta \eta \\
\gamma \epsilon}} o_{\delta \eta \gamma \epsilon} \rho_{\gamma \epsilon \delta \eta}, \\
\left\langle\Psi_{0}^{A}\right| O^{3 B}\left|\Psi_{0}^{A}\right\rangle & =\sum_{\substack{\delta \eta \xi \\
\gamma \epsilon \zeta}} o_{\delta \eta \xi \gamma \epsilon \zeta} \rho_{\gamma \epsilon \zeta \delta \eta \xi}
\end{aligned}
$$

© One exception is constituted by the Galitski-Migdal-Koltun sum rule for the total g.s. energy

$$
E_{0}^{A}=\frac{1}{3 \pi} \int_{-\infty}^{\epsilon_{F}^{-}} \mathrm{d} \omega \sum_{\alpha \beta}\left(2 t_{\alpha \beta}+\omega \delta_{\alpha \beta}\right) \operatorname{Im} g_{\beta \alpha}(\omega)+\frac{1}{3} \sum_{\substack{\alpha \gamma \\ \beta \delta}} v_{\alpha \gamma \beta \delta} \rho_{\beta \delta \alpha \gamma}
$$

Dyson equation: basic idea

\odot Schrödinger equation for many-body $\psi \rightarrow$ Dyson equation for one-body GF

- Equation of motion technique
- Perturbative expansion

Basic idea

1) Separate full Hamiltonian into unperturbed part + perturbation

$$
\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1}
$$

2) Compute unperturbed propagator

$$
G_{0}(z)=\left(z-\mathcal{H}_{0}\right)^{-1}
$$

3) Express full propagator in terms of G_{0} and \mathcal{H}_{1}
© Simple in the case of one-particle system:

$$
\begin{aligned}
G(z) & =\left(z-\mathcal{H}_{0}-\mathcal{H}_{1}\right)^{-1}=\left\{\left(z-\mathcal{H}_{0}\right)\left[1-\left(z-\mathcal{H}_{0}\right)^{-1} \mathcal{H}_{1}\right]\right\}^{-1} \\
& =\left[1-\left(z-\mathcal{H}_{0}\right)^{-1} \mathcal{H}_{1}\right]^{-1}\left(z-\mathcal{H}_{0}\right)^{-1} \quad \text { expand }\left(1-G_{0} \mathcal{H}_{1}\right)^{-1} \text { in power series } \\
& =\left[1-G_{0}(z) \mathcal{H}_{1}\right]^{-1} G_{0}(z) .
\end{aligned}
$$

$$
G=G_{0}+G_{0} \mathcal{H}_{1}\left(G_{0}+G_{0} \mathcal{H}_{1} G_{0}+\cdots\right)=G_{0}+G_{0} \mathcal{H}_{1} G
$$

Dyson equation: many-body case

© Many-body case more complicated:
${ }^{\prime \prime} \rightarrow$ Separation $\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1}$ exploited by working in interaction representation
$\xrightarrow{\prime} \rightarrow$ One-body Green's function is expanded as (now $\mathcal{H}_{1}=v$)

$$
G\left(1,1^{\prime}\right)=\frac{\sum_{n} \cdots \iint \cdots G_{2 n+1}^{(0)}(\overbrace{1,1^{\prime} ; 2,2^{\prime} ; 3,3^{\prime} ; \cdots}^{4 n+2 \text { variables }}) \overbrace{v \cdots v \cdots}^{n \text { terms }}}{\sum_{n} \cdots \iint \cdots G_{2 n}^{(0)}(\underbrace{2,2^{\prime} ; 3,3^{\prime} ; \cdots}_{4 n \text { variables }}) \underbrace{v \cdots v \cdots}_{n \text { terms }}}
$$

\rightarrow Unperturbed many-body GFs can be written just as products of one-body GFs

$$
G_{2 n}^{(0)}(\underbrace{1,1^{\prime} ; 2,2^{\prime} ; 3,3^{\prime} ; \cdots}_{4 n \text { variables }})=\sum_{\text {permutations }}(-1)^{P} \underbrace{G^{(0)}\left(1, \tilde{1}^{\prime}\right) \cdots G^{(0)}\left(2 n, 2 \tilde{n}^{\prime}\right)}_{2 n \text { one-body GFs }}
$$

${ }^{\prime \prime} \rightarrow$ Several terms cancel out (all disconnected combinations of variables), at the end:

$$
G=\sum_{n} \sum_{\text {connected }} \underbrace{G^{(0)} \cdots G^{(0)} \cdots}_{2 n+1 \text { propagators }} \underbrace{v \cdots v \cdots}_{n \text { interactions }}
$$

© In practice it is convenient to introduce Feynman diagrams
\rightarrow Expansion worked out diagrammatically

Dyson equation: diagrammatic expansion

© Feynman diagrams: exact \& unperturbed propagators and interaction lines depicted as

$$
G=\| \quad G^{(0)}=\downarrow \quad v=\cdots \cdots
$$

๑ Expansion for $G=\sum_{n} \sum_{\text {connected }} \underbrace{G^{(0)} \ldots G^{(0)} \ldots}_{2 n+1 \text { propagators }} \underbrace{v \cdots v \cdots}_{\text {interactions }}$ reads as

Dyson equation: diagrammatic expansion

© Introduce reducible self-energy
$\xrightarrow{\prime \rightarrow} \rightarrow$ Includes all diagrams after external legs are cut off

Dyson equation: diagrammatic expansion

\odot Select one-particle irreducible self-energy diagrams \rightarrow Irreducible self-energy
\rightarrow All contributions that cannot be separated in two parts by cutting a propagation line

Dyson equation: diagrammatic expansion

\bigcirc Select one-particle irreducible self-energy diagrams \rightarrow Irreducible self-energy
$\xrightarrow{\prime \prime} \rightarrow$ All contributions that cannot be separated in two parts by cutting a propagation line

Dyson equation: diagrammatic expansion

© Rewrite the expansion in the form of an iterative equation
${ }^{\prime \prime} \rightarrow$ Implicit equation that generates all orders

$$
\|=1+\frac{1}{\Sigma_{R}}
$$

This is itself the expansion for the dressed propagator

$$
G=G^{(0)}+G^{(0)} \Sigma G
$$

Dyson equation

Dyson equation: diagrammatic expansion

\bigcirc Further select two-particle irreducible self-energy diagrams \rightarrow Skeleton self-energy
$\xrightarrow{\prime \prime} \rightarrow$ Contributions that cannot be generated from lower-order diagrams with dressed propagators

E.g. this can be generated by the self-energy term

Dyson equation: diagrammatic expansion

© Further select two-particle irreducible self-energy diagrams \rightarrow Skeleton self-energy
$\xrightarrow{\prime \prime} \rightarrow$ Contributions that cannot be generated from lower-order diagrams with dressed propagators

${ }^{\prime \prime} \rightarrow$ All propagators in $\Sigma_{I S}$ are dressed
$\xrightarrow{\mathrm{m}} \mathrm{m}$ This characterises self-consistent schemes
$\xrightarrow{\prime \prime} \rightarrow$ Selected PT terms iterated to all orders

Intrinsically non-perturbative method

Approximations to the full Dyson equation

© Full solution as expensive as (exact) configuration interaction
$\xrightarrow{\prime \prime} \rightarrow$ Approximated solutions achieved via truncated diagrammatic expansions

- Several possibilities
- Truncate perturbative expansion of one-body propagator (no Dyson eq.)

$$
\|=1+4-0+4-0+1+0-0+4+0+\ldots
$$

- Truncate perturbative/skeleton expansion of self-energy

$$
\Sigma=-\cdots \bigcirc+\pi+\ldots
$$

Dyson eq.

- Resum (to infinite order) certain types of diagrams

$$
\|=1+\frac{1}{\Sigma}
$$

- Truncate \& impose analytic form of exact self-energy
 complete at perturbative order n
${ }^{\prime \prime} \rightarrow$ Algebraic diagrammatic construction (ADC)

Spectral representation

\Rightarrow Exact GF display a spectral representation

$$
g_{\alpha \beta}(\omega)=\sum_{n} \frac{\left(\mathcal{X}_{\alpha}^{n}\right)^{*} \mathcal{X}_{\beta}^{n}}{\omega-\varepsilon_{n}^{+}+i \eta}+\sum_{k} \frac{\mathcal{Y}_{\alpha}^{k}\left(\mathcal{Y}_{\beta}^{k}\right)^{*}}{\omega-\varepsilon_{k}^{-}-i \eta}
$$

Separation energies

$$
\begin{aligned}
& \varepsilon_{n}^{+}=E_{n}^{A+1}-E_{0}^{A} \\
& \varepsilon_{k}^{-}=E_{0}^{A}-E_{k}^{A-1}
\end{aligned}
$$

Spectral representation

\Rightarrow Exact GF display a spectral representation

$$
g_{\alpha \beta}(\omega)=\sum_{n} \frac{\left(\mathcal{X}_{\alpha}^{n}\right)^{*} \mathcal{X}_{\beta}^{n}}{\omega-\varepsilon_{n}^{+}+i \eta}+\sum_{k} \frac{\mathcal{Y}_{\alpha}^{k}\left(\mathcal{Y}_{\beta}^{k}\right)^{*}}{\omega-\varepsilon_{k}^{-}-i \eta}
$$

Transition amplitudes

$$
\begin{aligned}
\mathcal{X}_{\alpha}^{n} & =\left\langle\Psi_{n}^{\mathrm{A}+1}\right| a_{\alpha}^{\dagger}\left|\Psi_{0}^{\mathrm{A}}\right\rangle \\
\mathcal{Y}_{\alpha}^{k} & =\left\langle\Psi_{k}^{\mathrm{A}-1}\right| a_{\alpha}\left|\Psi_{0}^{\mathrm{A}}\right\rangle
\end{aligned}
$$

Separation energies

$$
\begin{aligned}
& \varepsilon_{n}^{+}=E_{n}^{A+1}-E_{0}^{A} \\
& \varepsilon_{k}^{-}=E_{0}^{A}-E_{k}^{A-1}
\end{aligned}
$$

Spectral representation

\Rightarrow Exact GF display a spectral representation

$$
g_{\alpha \beta}(\omega)=\sum_{n} \frac{\left(\mathcal{X}_{\alpha}^{n}\right)^{*} \mathcal{X}_{\beta}^{n}}{\omega-\varepsilon_{n}^{+}+i \eta}+\sum_{k} \frac{\mathcal{Y}_{\alpha}^{k}\left(\mathcal{Y}_{\beta}^{k}\right)^{*}}{\omega-\varepsilon_{k}^{-}-i \eta}
$$

Transition amplitudes

$$
\begin{aligned}
\mathcal{X}_{\alpha}^{n} & =\left\langle\Psi_{n}^{\mathrm{A}+1}\right| a_{\alpha}^{\dagger}\left|\Psi_{0}^{\mathrm{A}}\right\rangle \\
\mathcal{Y}_{\alpha}^{k} & =\left\langle\Psi_{k}^{\mathrm{A}-1}\right| a_{\alpha}\left|\Psi_{0}^{\mathrm{A}}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { Separation energies } \\
& \qquad \begin{array}{c}
\varepsilon_{n}^{+}=E_{n}^{A+1}-E_{0}^{A} \\
\varepsilon_{k}^{-}=E_{0}^{A}-E_{k}^{A-1}
\end{array}
\end{aligned}
$$

Spectral representation

\Rightarrow Exact GF display a spectral representation

$$
g_{\alpha \beta}(\omega)=\sum_{n} \frac{\left(\mathcal{X}_{\alpha}^{n}\right)^{*} \mathcal{X}_{\beta}^{n}}{\omega-\varepsilon_{n}^{+}+i \eta}+\sum_{k} \frac{\mathcal{Y}_{\alpha}^{k}\left(\mathcal{Y}_{\beta}^{k}\right)^{*}}{\omega-\varepsilon_{k}^{-}-i \eta}
$$

Transition amplitudes

$$
\begin{aligned}
\mathcal{X}_{\alpha}^{n} & =\left\langle\Psi_{n}^{\mathrm{A}+1}\right| a_{\alpha}^{\dagger}\left|\Psi_{0}^{\mathrm{A}}\right\rangle \\
\mathcal{Y}_{\alpha}^{k} & =\left\langle\Psi_{k}^{\mathrm{A}-1}\right| a_{\alpha}\left|\Psi_{0}^{\mathrm{A}}\right\rangle
\end{aligned}
$$

Separation energies

$$
\begin{aligned}
& \varepsilon_{n}^{+}=E_{n}^{A+1}-E_{0}^{A} \\
& \varepsilon_{k}^{-}=E_{0}^{A}-E_{k}^{A-1}
\end{aligned}
$$

Numerator + denominator

Spectral strength distribution

$$
\mathcal{S}(\omega)=\sum_{n \in \mathcal{H}_{A+1}} S F_{n}^{+} \delta\left(\omega-\varepsilon_{n}^{+}\right)+\sum_{k \in \mathcal{H}_{A-1}} S F_{k}^{-} \delta\left(\omega-\varepsilon_{k}^{-}\right)
$$

Spectroscopic factors

$$
\begin{aligned}
& S F_{n}^{+}=\sum_{\alpha \in \mathcal{H}_{1}}\left|\mathcal{X}_{\alpha}^{n}\right|^{2} \\
& S F_{k}^{-}=\sum_{\alpha \in \mathcal{H}_{1}}\left|\mathcal{Y}_{\alpha}^{k}\right|^{2}
\end{aligned}
$$

Spectral representation

\Rightarrow Exact GF display a spectral representation

$$
g_{\alpha \beta}(\omega)=\sum_{n} \frac{\left(\mathcal{X}_{\alpha}^{n}\right)^{*} \mathcal{X}_{\beta}^{n}}{\omega-\varepsilon_{n}^{+}+i \eta}+\sum_{k} \frac{\mathcal{Y}_{\alpha}^{k}\left(\mathcal{Y}_{\beta}^{k}\right)^{*}}{\omega-\varepsilon_{k}^{-}-i \eta}
$$

$$
\begin{aligned}
& \text { Transition amplitudes } \\
& \begin{array}{c}
\mathcal{X}_{\alpha}^{n}=\left\langle\Psi_{n}^{\mathrm{A}+1}\right| a_{\alpha}^{\dagger}\left|\Psi_{0}^{\mathrm{A}}\right\rangle \\
\mathcal{Y}_{\alpha}^{k}=\left\langle\Psi_{k}^{\mathrm{A}-1}\right| a_{\alpha}\left|\Psi_{0}^{\mathrm{A}}\right\rangle
\end{array}
\end{aligned}
$$

Separation energies

$$
\begin{aligned}
& \varepsilon_{n}^{+}=E_{n}^{A+1}-E_{0}^{A} \\
& \varepsilon_{k}^{-}=E_{0}^{A}-E_{k}^{A-1}
\end{aligned}
$$

Numerator + denominator

Spectroscopic factors

$$
\begin{aligned}
& S F_{n}^{+}=\sum_{\alpha \in \mathcal{H}_{1}}\left|\mathcal{X}_{\alpha}^{n}\right|^{2} \\
& S F_{k}^{-}=\sum_{\alpha \in \mathcal{H}_{1}}\left|\mathcal{Y}_{\alpha}^{k}\right|^{2}
\end{aligned}
$$

Spectral strength distribution

$$
\mathcal{S}(\omega)=\sum_{n \in \mathcal{H}_{A+1}} S F_{n}^{+} \delta\left(\omega-\varepsilon_{n}^{+}\right)+\sum_{k \in \mathcal{H}_{A-1}} S F_{k}^{-} \delta\left(\omega-\varepsilon_{k}^{-}\right)
$$

Spectral representation

\Rightarrow Exact GF display a spectral representation

$$
g_{\alpha \beta}(\omega)=\sum_{n} \frac{\left(\mathcal{X}_{\alpha}^{n}\right)^{*} \mathcal{X}_{\beta}^{n}}{\omega-\varepsilon_{n}^{+}+i \eta}+\sum_{k} \frac{\mathcal{Y}_{\alpha}^{k}\left(\mathcal{Y}_{\beta}^{k}\right)^{*}}{\omega-\varepsilon_{k}^{-}-i \eta}
$$

$$
\begin{gathered}
\text { Transition amplitudes } \\
\begin{array}{c}
\mathcal{X}_{\alpha}^{n}=\left\langle\Psi_{n}^{\mathrm{A}+1}\right| a_{\alpha}^{\dagger}\left|\Psi_{0}^{\mathrm{A}}\right\rangle \\
\mathcal{Y}_{\alpha}^{k}=\left\langle\Psi_{k}^{\mathrm{A}-1}\right| a_{\alpha}\left|\Psi_{0}^{\mathrm{A}}\right\rangle
\end{array}
\end{gathered}
$$

Separation energies

$$
\begin{aligned}
& \varepsilon_{n}^{+}=E_{n}^{A+1}-E_{0}^{A} \\
& \varepsilon_{k}^{-}=E_{0}^{A}-E_{k}^{A-1}
\end{aligned}
$$

Numerator + denominator

Spectroscopic factors

$$
\begin{aligned}
& S F_{n}^{+}=\sum_{\alpha \in \mathcal{H}_{1}}\left|\mathcal{X}_{\alpha}^{n}\right|^{2} \\
& S F_{k}^{-}=\sum_{\alpha \in \mathcal{H}_{1}}\left|\mathcal{Y}_{\alpha}^{k}\right|^{2}
\end{aligned}
$$

[Somà 2020]

$$
\begin{gathered}
\text { Spectral strength distribution } \\
\mathcal{S}(\omega)=\sum_{n \in \mathcal{H}_{A+1}} S F_{n}^{+} \delta\left(\omega-\varepsilon_{n}^{+}\right)+\sum_{k \in \mathcal{H}_{A-1}} S F_{k}^{-} \delta\left(\omega-\varepsilon_{k}^{-}\right)
\end{gathered}
$$

Spectral representation

\Rightarrow Exact GF display a spectral representation

$$
g_{\alpha \beta}(\omega)=\sum_{n} \frac{\left(\mathcal{X}_{\alpha}^{n}\right)^{*} \mathcal{X}_{\beta}^{n}}{\omega-\varepsilon_{n}^{+}+i \eta}+\sum_{k} \frac{\mathcal{Y}_{\alpha}^{k}\left(\mathcal{Y}_{\beta}^{k}\right)^{*}}{\omega-\varepsilon_{k}^{-}-i \eta}
$$

$$
\begin{gathered}
\text { Transition amplitudes } \\
\begin{array}{c}
\mathcal{X}_{\alpha}^{n}=\left\langle\Psi_{n}^{\mathrm{A}+1}\right| a_{\alpha}^{\dagger}\left|\Psi_{0}^{\mathrm{A}}\right\rangle \\
\mathcal{Y}_{\alpha}^{k}=\left\langle\Psi_{k}^{\mathrm{A}-1}\right| a_{\alpha}\left|\Psi_{0}^{\mathrm{A}}\right\rangle
\end{array}
\end{gathered}
$$

Separation energies

$$
\begin{aligned}
& \varepsilon_{n}^{+}=E_{n}^{A+1}-E_{0}^{A} \\
& \varepsilon_{k}^{-}=E_{0}^{A}-E_{k}^{A-1}
\end{aligned}
$$

Numerator + denominator

Spectroscopic factors

$$
\begin{aligned}
& S F_{n}^{+}=\sum_{\alpha \in \mathcal{H}_{1}}\left|\mathcal{X}_{\alpha}^{n}\right|^{2} \\
& S F_{k}^{-}=\sum_{\alpha \in \mathcal{H}_{1}}\left|\mathcal{Y}_{\alpha}^{k}\right|^{2}
\end{aligned}
$$

[Somà 2020]

Spectral representation

\Rightarrow Exact GF display a spectral representation

$$
g_{\alpha \beta}(\omega)=\sum_{n} \frac{\left(\mathcal{X}_{\alpha}^{n}\right)^{*} \mathcal{X}_{\beta}^{n}}{\omega-\varepsilon_{n}^{+}+i \eta}+\sum_{k} \frac{\mathcal{Y}_{\alpha}^{k}\left(\mathcal{Y}_{\beta}^{k}\right)^{*}}{\omega-\varepsilon_{k}^{-}-i \eta}
$$

$$
\begin{gathered}
\text { Transition amplitudes } \\
\begin{array}{c}
\mathcal{X}_{\alpha}^{n}=\left\langle\Psi_{n}^{\mathrm{A}+1}\right| a_{\alpha}^{\dagger}\left|\Psi_{0}^{\mathrm{A}}\right\rangle \\
\mathcal{Y}_{\alpha}^{k}=\left\langle\Psi_{k}^{\mathrm{A}-1}\right| a_{\alpha}\left|\Psi_{0}^{\mathrm{A}}\right\rangle
\end{array}
\end{gathered}
$$

Separation energies

$$
\begin{aligned}
& \varepsilon_{n}^{+}=E_{n}^{A+1}-E_{0}^{A} \\
& \varepsilon_{k}^{-}=E_{0}^{A}-E_{k}^{A-1}
\end{aligned}
$$

Numerator + denominator

Spectroscopic factors

$$
\begin{aligned}
& S F_{n}^{+}=\sum_{\alpha \in \mathcal{H}_{1}}\left|\mathcal{X}_{\alpha}^{n}\right|^{2} \\
& S F_{k}^{-}=\sum_{\alpha \in \mathcal{H}_{1}}\left|\mathcal{Y}_{\alpha}^{k}\right|^{2}
\end{aligned}
$$

[Somà 2020]

Connection with experiments: direct reactions

๑ Basic idea: spectroscopy via direct knock-out reactions
\circ External probe transferring energy ω and momentum \mathbf{q}
\circ Cross section $\left.\quad d \sigma \sim \sum_{f} \delta\left(\omega+E_{i}-E_{f}\right)\left|\left\langle\Psi_{f}\right| R(\mathbf{q})\right| \Psi_{i}\right\rangle\left.\right|^{2}$ with $\quad R(\mathbf{q})=\sum_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}-\mathbf{q}}$

- Reconstruct energy and momentum of struck nucleon

$$
\begin{aligned}
E_{\text {miss }} & =\frac{\mathbf{p}^{2}}{2 m}-\omega=E_{0}^{A}-E_{n}^{A-1} \\
\mathbf{p}_{\text {miss }} & =\mathbf{p}-\mathbf{q}
\end{aligned}
$$

- Information contained in the spectral function!

$$
\begin{aligned}
d \sigma & \left.\sim \sum_{n} \delta\left(E_{m i s s}-E_{0}^{A}+E_{n}^{A-1}\right)\left|\left\langle\Psi_{n}^{A-1}\right| a_{\mathbf{p}_{m i s s}}\right| \Psi_{0}^{A}\right\rangle\left.\right|^{2} \\
& =S_{\mathbf{p}_{m i s s}}\left(E_{m i s s}\right)
\end{aligned}
$$

\odot Two assumptions

- Impulse approximation (all energy transferred to one nucleon)
- No final state interactions

Connection with experiments: direct reactions

๑ Example: electron scattering

Results from (e,e'p) on ${ }^{16} \mathrm{O}$ (ALS in Saclay)

[Cipollone, Barbieri, Navrátil 2015]

GF calculations with chiral $2 \mathrm{~N}+3 \mathrm{~N}$ forces

However, keep in mind that

- Separation energies (position of the peaks in ω) are observable quantities
- Spectroscopic factors (height of the peaks) are non-observable

Observables vs non-observables

- Spectroscopic factors characterise how "correlated" the wave function is
- SF close to $100 \% \rightarrow$ all s.p. strength in one state $\rightarrow \sim$ independent particle picture
\circ Low SF \rightarrow Fragmented strength \rightarrow highly correlated w.f. \neq independent particle picture

This can be quantitatively discussed only within a given model at a given resolution scale

- Non-observability of spectroscopic factors
- Can be mathematically proven
- Was shown in actual GF calculations - in a limited interval of the res. scale $\left(\lambda \in[1.88,2.23] \mathrm{fm}^{-1}\right)$

Effective single-particle energies

© To what extent can we extract a single-particle picture from the fragmented spectrum?

$$
\underbrace{E_{k}^{ \pm}}_{\text {Outcome of Schr. equation }}=\underbrace{e_{p}}_{\text {Ind. particles }}+\underbrace{\Delta E_{p \rightarrow k}}_{\text {Correlations }}
$$

© Baranger centroids (ESPEs) provide a model-independent procedure
$\xrightarrow{\prime \prime} \rightarrow$ Define centroid Hamiltonian

$$
\mathbf{h}^{\text {cent }} \equiv \sum_{\mu \in \mathcal{H}_{A+1}} \mathbf{S}_{\mu}^{+} E_{\mu}^{+}+\sum_{v \in \mathcal{H}_{A-1}} \mathbf{S}_{v}^{-} E_{v}^{-}
$$

$\xrightarrow{\prime \prime} \rightarrow$ Diagonalise

$$
\mathbf{h}^{\mathrm{cent}} \psi_{p}^{\mathrm{cent}}=e_{p}^{\mathrm{cent}} \psi_{p}^{\mathrm{cent}}
$$

$\xrightarrow{\prime \prime} \rightarrow$ ESPEs as centroids

$$
\begin{gathered}
e_{p}^{\text {cent }} \equiv \sum_{\mu \in \mathcal{H}_{A+1}} S_{\mu}^{+p p} E_{\mu}^{+}+\sum_{v \in \mathcal{H}_{A-1}} S_{v}^{-p p} E_{v}^{-} \\
\vdots
\end{gathered}
$$

Recollect strength in both removal and addition channels

Effective single-particle energies

\odot Still, this decomposition is scale-dependent

\rightarrow Also reconstructed ESPEs are non-observable quantities
\odot This can be again seen in actual GF calculations

[Duguet, Hergert, Holt, Somà 2015]

Spectral representation: finite vs infinite systems

๑ Recall the Källén-Lehmann representation

$$
G_{a b}(z)=\sum_{\mu} \frac{\left\langle\Psi_{0}^{A}\right| a_{a}\left|\Psi_{\mu}^{A+1}\right\rangle\left\langle\Psi_{\mu}^{A+1}\right| a_{b}^{\dagger}\left|\Psi_{0}^{A}\right\rangle}{z-E_{\mu}^{+}+i \eta}+\sum_{\nu} \frac{\left\langle\Psi_{0}^{A}\right| a_{b}^{\dagger}\left|\Psi_{\nu}^{A-1}\right\rangle\left\langle\Psi_{\nu}^{A-1}\right| a_{a}\left|\Psi_{0}^{A}\right\rangle}{z-E_{\nu}^{-}-i \eta}
$$

$$
\begin{array}{ll}
\text { with } & E_{\mu}^{+} \equiv E_{\mu}^{A+1}-E_{0}^{A} \\
& E_{\nu}^{-} \equiv E_{0}^{A}-E_{\nu}^{A-1}
\end{array}
$$

i.e. energies of the $A \pm \mathbf{1}$-body system w.r.t. the ground state of the A-body system

\odot Generally, a continuum contribution can be added

$$
+\sum_{\gamma} \int_{T_{c}}^{+\infty} d E \frac{\left\langle\Psi_{0}^{A}\right| a_{a}\left|\Psi_{\gamma E}^{A+1}\right\rangle\left\langle\Psi_{\gamma E}^{A+1}\right| a_{b}^{\dagger}\left|\Psi_{0}^{A}\right\rangle}{z-E+i \eta}
$$

\odot For extended systems (large N) spectrum is degenerate
\rightarrow Isolated poles no longer meaningful

$$
G_{R / A}(k, z)=\int \frac{d \omega}{2 \pi} \frac{\mathcal{A}(k, \omega)}{z-\omega \pm i \eta}
$$

Spectral representation and quasiparticles

- The spectral function describes the dispersion in energy of modes with a given momentum
\odot Excitation of the system would then show up as peaks in A

$$
G_{R / A}(k, z)=\int \frac{d \omega}{2 \pi} \frac{\mathcal{A}(k, \omega)}{z-\omega \pm i \eta}
$$

$\rightarrow \rightarrow$ Idea: associate a well-defined peak with a quasiparticle.

- Quasiparticles will have, in general
- Modified or renormalised "single-particle" properties (e.g. an effective mass)
- A finite lifetime, physically associated with the damping of the excitation
- The lifetime is given by the width of the quasiparticle peak $\tau \sim \gamma_{k}^{-1}$
- Quasiparticle properties computed from the GF pole

$$
G^{-1}(k, z)=z-\frac{k^{2}}{2 m}-\Sigma(k, z) \quad \longrightarrow \quad z_{k}=\varepsilon_{k}+i \gamma_{k}
$$

Quasiparticle pole

\odot In practice, one needs to perform an analytic continuation of the self-energy

$$
z(k)=\frac{k^{2}}{2 m}+\operatorname{Re} \tilde{\Sigma}(k, z(k))+i \operatorname{Im} \tilde{\Sigma}(k, z(k))
$$

Electron-phonon Einstein model

[Eiguren, Ambrosch-Draxl \& Echenique 2009]

Symmetric nuclear matter

[Rios \& Somà 2012]

Nucleon mean free path

๑ Mean free path computed from quasiparticle lifetime and (group) velocity $\lambda_{k}=\frac{v_{k}}{\gamma_{k}}=\frac{\partial_{k} \varepsilon_{k}}{\gamma_{k}}$

- Mean-free path extracted from "nuclear stopping"
- Heavy-ion collisions
- INDRA collaboration at GANIL

[Lopez et al. 2014]
[Rios \& Somà 2012]

Closed- vs. open-shell systems

© In practice: the reference state varies with $N \& Z$

Fill single-particle levels

Closed-shell systems

Larger energy gap, excitations hindered, enhanced stability

Clear ph hierarchy, expansion well defined

Open-shell systems

Smaller $(\rightarrow 0)$ energy gap, excitations enabled, lesser stability

No ph hierarchy, expansion ill defined

Symmetry breaking

\odot Idea: reopen gap via symmetry breaking $\left(\rightarrow G_{\mathrm{Ham}} \neq G_{\mathrm{wf}}\right)$

Physical symmetry	Group	Correlations
Rotational inv.	$\mathrm{SU}(2)$	Deformation
Particle-number	$\mathrm{U}(1)_{\mathrm{N}} \times \mathrm{U}(1)_{\mathrm{z}}$	Superfluidity

Singly open-shell \Rightarrow Sufficient to break U(1) Doubly open-shell \leadsto Necessary to break SU(2)
\checkmark Advantage: polynomial scaling $\left(N^{\alpha}\right) \quad \times$ Prices to pay: N increases + symmetries must be restored

Gorkov Green's functions

Pairing correlations \Rightarrow

$$
\begin{aligned}
& E_{0}^{A \pm 2 n}(Z \pm 2 n, N)-E_{0}^{A}(Z, N) \approx \pm 2 n \mu_{Z} \\
& E_{0}^{A \pm 2 n}(Z, N \pm 2 n)-E_{0}^{A}(Z, N) \approx \pm 2 n \mu_{N}
\end{aligned}
$$

Degeneracy associated to creating/annihilating pairs

Hamiltonian \rightarrow Grand-canonical potential

$$
\Omega \equiv H-\mu_{Z} Z-\mu_{N} N
$$

G.s. wave function in equilibrium with a reservoir of Cooper pairs

Symmetry-breaking wave function

$$
\left|\Psi_{0}\right\rangle=\sum_{A}^{\text {even }}\left|\Psi_{0}^{A}\right\rangle
$$

Generalised one-body GFs

i $g_{\alpha \beta}^{11}\left(t-t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left[a_{\alpha}(t) a_{\beta}^{\dagger}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle$
i $g_{\alpha \beta}^{12}\left(t-t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left[a_{\alpha}(t) \bar{a}_{\beta}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle$
i $g_{\alpha \beta}^{21}\left(t-t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left[\bar{a}_{\alpha}^{\dagger}(t) a_{\beta}^{\dagger}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle$
i $g_{\alpha \beta}^{22}\left(t-t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left[\bar{a}_{\alpha}^{\dagger}(t) \bar{a}_{\beta}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle$

SOVIET PHYSICS JETP VOLUME $34(7)$, NUMBER $3 \quad$ SEPTEMBER, 1958

ON THE ENERGY SPECTRUM OF SUPERCONDUCTORS
L. P. GOR' KOV

Institute for Physical Problems, Academy of Sciences, U.S.S.R.
Submitted to JETP editor November 18, 1957
J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 735-739 (March, 1958)

A method is proposed, based on the mathematical apparatus of quantum field theory, for the calculation of the properties of a system of Fermi particles with attractive interaction.

$$
\begin{aligned}
\mathrm{i}_{\alpha \beta}\left(t-t^{\prime}\right) & \equiv\left\langle\Psi_{0}\right| T\left\{\mathbf{A}_{\alpha}(t) \mathbf{A}_{\beta}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \\
& =\mathrm{i}\left(\begin{array}{cc}
g_{\alpha \beta}^{11}\left(t-t^{\prime}\right) & g_{\alpha \beta}^{12}\left(t-t^{\prime}\right) \\
g_{\alpha \beta}^{21}\left(t-t^{\prime}\right) & g_{\alpha \beta}^{22}\left(t-t^{\prime}\right)
\end{array}\right)
\end{aligned}
$$

Gorkov Green's functions

Gorkov equation

$\mathbf{g}_{\alpha \beta}(\omega)=\mathbf{g}_{0 \alpha \beta}(\omega)+\sum_{\gamma \delta} \mathbf{g}_{0 \alpha \gamma}(\omega) \boldsymbol{\Sigma}_{\gamma \delta}^{\star}(\omega) \mathbf{g}_{\gamma \beta}(\omega)$
Self-energy matrix

$$
\begin{aligned}
& \text { rgy matrix } \\
& \qquad \Sigma_{\alpha \beta}^{\star}(\omega) \equiv\left(\begin{array}{cc}
\Sigma_{\alpha \beta}^{\star 11}(\omega) & \Sigma_{\alpha \beta}^{\star 12}(\omega) \\
\Sigma_{\alpha \beta}^{\star 21}(\omega) & \Sigma_{\alpha \beta}^{\star 22}(\omega)
\end{array}\right)
\end{aligned}
$$

Perturbative expansion

$$
\begin{aligned}
& \Sigma_{\alpha \beta}^{\star 11}(\omega)=\cdots \square+i \square+i \Omega+\ldots \\
& \Sigma_{\alpha \beta}^{\star 21}(\omega)=\Omega+i 0+i 0+\ldots
\end{aligned}
$$

[Somà, Duguet, Barbieri 2011]

Observables

$$
\left\langle\Psi_{0}\right| O\left|\Psi_{0}\right\rangle=\sum_{\alpha \beta} o_{\alpha \beta} \rho_{\beta \alpha} \quad \text { where } \quad \rho_{\alpha \beta} \equiv\left\langle\Psi_{0}\right| c_{\beta}^{\dagger} c_{\alpha}\left|\Psi_{0}\right\rangle=\frac{1}{\pi} \int_{-\infty}^{0} \operatorname{Im} g_{\alpha \beta}^{11}(\omega) d \omega
$$

\Rightarrow Generalised Koltun sum rule holds $\quad \Omega_{0}=\frac{1}{2 \pi} \int_{-\infty}^{0} d \omega \sum_{\alpha \beta}\left[t_{\alpha \beta}-\mu \delta_{\alpha \beta}+\omega \delta_{\alpha \beta}\right] \operatorname{Im} g_{\beta \alpha}^{11}(\omega)$

Spectral representation

$\mathbf{g}_{\alpha \beta}(\omega)=\sum_{k}\left\{\frac{\mathbf{X}_{\alpha}^{k} \mathbf{X}_{\beta}^{k \dagger}}{\omega-\omega_{k}+\mathrm{i} \eta}+\frac{\mathbf{Y}_{\alpha}^{k} \mathbf{Y}_{\beta}^{k \dagger}}{\omega+\omega_{k}-\mathrm{i} \eta}\right\}$

Missing step: symmetry restoration

- Correct particle number on average
- Observables "contaminated"
- Effect depends on nucleus and observable

Algebraic diagrammatic construction

Gorkov self-energy has the general form

$$
\begin{aligned}
\boldsymbol{\Sigma}_{\alpha \beta}^{\star}(\omega)=-\mathbf{U}+\boldsymbol{\Sigma}_{\alpha \beta}^{(\infty)}+\tilde{\boldsymbol{\Sigma}}_{\alpha \beta}(\omega) & \text { Dynamical part has also a spectral representation } \\
\tilde{\boldsymbol{\Sigma}}_{\alpha \beta}(\omega) & =\sum_{k}\left\{\frac{\mathbf{M}_{\alpha}^{k} \mathbf{M}_{\beta}^{k \dagger}}{\omega-E_{k}+i \eta}+\frac{\mathbf{N}_{\alpha}^{k} \mathbf{N}_{\beta}^{k \dagger}}{\omega+E_{k}-i \eta}\right\} \equiv \tilde{\boldsymbol{\Sigma}}_{\alpha \beta}^{+}(\omega)+\tilde{\boldsymbol{\Sigma}}_{\alpha \beta}^{-}(\omega)
\end{aligned}
$$

Expand in perturbation

$$
\frac{\tilde{\boldsymbol{\Sigma}}_{\alpha \beta}^{+}(\omega)=\mathbf{M}_{\alpha}(\omega \mathbf{1}-\mathbf{E})^{-1} \mathbf{M}_{\beta}^{\dagger} .}{}
$$

$$
\tilde{\boldsymbol{\Sigma}}_{\alpha \beta}^{+}(\omega)=\tilde{\boldsymbol{\Sigma}}_{\alpha \beta}^{+(1)}(\omega)+\tilde{\boldsymbol{\Sigma}}_{\alpha \beta}^{+(2)}(\omega)+\ldots \quad \text { Algebraic diagrammatic construction (ADC) postulates }
$$

Expand in perturbation

$$
\tilde{\boldsymbol{\Sigma}}_{\alpha \beta}^{+\mathrm{ADC}}(\omega)=\mathbf{C}_{\alpha}(\omega \mathbf{1}-\mathbf{W}-\mathbf{P})^{-1} \mathbf{C}_{\beta}^{\dagger}
$$

[Schirmer et al. 1983]

$$
\begin{aligned}
\mathbf{P} & =\mathbf{P}^{(1)}+\mathbf{P}^{(2)}+\ldots \\
\mathbf{C}_{\alpha} & =\mathbf{C}_{\alpha}^{(1)}+\mathbf{C}_{\alpha}^{(2)}+\ldots
\end{aligned}
$$

Match $\operatorname{ADC}(\mathbf{n})$ to \mathbf{n}-th order perturbation theory

$$
\tilde{\boldsymbol{\Sigma}}_{\alpha \beta}^{+\mathrm{ADC}}(\omega)=\mathbf{C}_{\alpha}(\omega \mathbf{1}-\mathbf{W})^{-1} \sum_{n=0}^{\infty}\left\{\mathbf{P}(\omega \mathbf{1}-\mathbf{W})^{-1}\right\}^{n} \mathbf{C}_{\beta}^{\dagger}
$$

\Rightarrow ADC: re-organisation of the perturbative series

- Systematic set of approximations ADC(n)
- Infinite partial resummations [from $\operatorname{ADC}(3)$]
- Analytic structure preserved \leftarrow causality

Gorkov ADC

- ADC(2) derived \& implemented
[Somà, Duguet, Barbieri 2011]
- $\operatorname{ADC}(3)$ derived
[Barbieri, Duguet, Somà 2022]

Algebraic diagrammatic construction

\bigcirc ADC \rightarrow rewrite Gorkov equation as an energy-independent eigenvalue problem
$\mathbf{g}_{\alpha \beta}(\omega)=\mathbf{g}_{0 \alpha \beta}(\omega)+\sum_{\gamma \delta} \mathbf{g}_{0 \alpha \gamma}(\omega) \Sigma_{\gamma \delta}^{\star}(\omega) \mathbf{g}_{\gamma \beta}(\omega)$

Exploit analytic structure of \mathbf{g}
$\mathbf{g}_{\alpha \beta}(\omega)=\sum_{k}\left\{\frac{\mathbf{X}_{\alpha}^{k} \mathbf{X}_{\beta}^{k \dagger}}{\omega-\omega_{k}+\mathrm{i} \eta}+\frac{\mathbf{Y}_{\alpha}^{k} \mathbf{Y}_{\beta}^{k \dagger}}{\omega+\omega_{k}-\mathrm{i} \eta}\right\}$
$\omega_{k} \mathbf{X}_{\alpha}^{k}=\sum_{\beta} \boldsymbol{\Sigma}_{\alpha \beta}(\omega) \mathbf{X}_{\beta}^{k}$
Energy-dependent eigenvalue problem
$\omega_{k}\binom{\mathbf{X}^{k}}{\mathbf{Z}^{k}}=\left(\begin{array}{cc}\boldsymbol{\Sigma}^{\infty} & \mathbf{C} \\ \mathbf{C}^{\dagger} & \mathbf{W}+\mathbf{P}\end{array}\right)\binom{\mathbf{X}^{k}}{\mathbf{Z}^{k}} \equiv \boldsymbol{\Xi}\binom{\mathbf{X}^{k}}{\mathbf{Z}^{k}}$
(Hermitian) energy-independent eigenvalue problem
ansmentan

$$
\begin{array}{rlrl}
\boldsymbol{\Sigma}^{\infty} & =\boldsymbol{\Sigma}^{\infty}(\mathbf{X}) \\
\mathbf{C} & =\mathbf{C}(\mathbf{X}, \omega) & & \\
\mathbf{W} & =\mathbf{W}(\omega) \\
\mathbf{P} & =\mathbf{P}(\omega) & & \\
& \rightarrow \text { Matrative solution } \\
\text { Mamensions increase at every iteration }
\end{array}
$$

Implementation: practical steps

1. Derive working equations

- From diagrams to algebraic expressions

2. Choose (one-body) basis \rightarrow rewrite working equation in this basis

- Symmetries of the problem may be exploited to devise reduced basis

3. Implement numerical code

- Usually in C++ or Fortran

4. Get $2 \mathrm{~N} \& 3 \mathrm{~N}$ interaction matrix elements

- Non-trivial task, very recently public routines becoming available

5. Benchmark \& optimise

- Test against different implementation
- Parallelisation to exploit high-performance computing resources
- Optimisation usually method-specific

Uncertainties

\odot From basis \& many-body truncations

- Truncation of one-body Hilbert space

Typically according to energy of basis states

$$
e=2 n+\ell \leqslant e_{\max }
$$

Uncertainties

\odot From basis \& many-body truncations

- Truncation of one-body Hilbert space
- Truncation of three-body matrix elements

Additional truncation necessary

$$
e_{1}+e_{2}+e_{3} \leqslant E_{3 \max }<3 e_{\max }
$$

Uncertainties

© From basis \& many-body truncations

- Truncation of one-body Hilbert space
- Truncation of three-body matrix elements
- Approximate treatment of 3 N forces

[Roth et al. 2012]

Uncertainties

\odot From basis \& many-body truncations

- Truncation of one-body Hilbert space
- Truncation of three-body matrix elements
- Approximate treatment of 3 N forces
- Truncation of self-energy expansion

Uncertainties

\odot From basis \& many-body truncations

- Truncation of one-body Hilbert space
- Truncation of three-body matrix elements
- Approximate treatment of 3 N forces
- Truncation of self-energy expansion
- Symmetry breaking

[Somà et al., unpublished]
Model-independent estimate

$$
\Delta E=\frac{1}{8 a}\left\langle\Delta N^{2}\right\rangle+\frac{1}{8 b}\left\langle\Delta Z^{2}\right\rangle+\frac{1}{4 c}\langle\Delta N \Delta Z\rangle
$$

Uncertainties

© From basis \& many-body truncations

- Truncation of one-body Hilbert space
- Truncation of three-body matrix elements
- Approximate treatment of 3 N forces
- Truncation of self-energy expansion
- Symmetry breaking
- Non-unitarity of SRG transformation

[Hüther et al. 2020]

Uncertainties

\odot From basis \& many-body truncations

- Truncation of one-body Hilbert space
- Truncation of three-body matrix elements
- Approximate treatment of 3 N forces
- Truncation of self-energy expansion
- Symmetry breaking
- Non-unitarity of SRG transformation

Uncertainties

\odot From basis \& many-body truncations

- Truncation of one-body Hilbert space
- Truncation of three-body matrix elements
- Approximate treatment of 3 N forces
- Truncation of self-energy expansion
- Symmetry breaking
- Non-unitarity of SRG transformation

\odot From the input Hamiltonian

- Past
\Rightarrow Test different input interactions (not systematic)

Uncertainties

\odot From basis \& many-body truncations

- Truncation of one-body Hilbert space
- Truncation of three-body matrix elements
- Approximate treatment of 3 N forces
- Truncation of self-energy expansion
- Symmetry breaking
- Non-unitarity of SRG transformation

\odot From the input Hamiltonian

- Past
\Rightarrow Test different input interactions (not systematic)
- Present
\Rightarrow Hamiltonians in WPC available at different orders

Uncertainties

\bigcirc From basis \& many-body truncations

- Truncation of one-body Hilbert space
- Truncation of three-body matrix elements
- Approximate treatment of 3 N forces
- Truncation of self-energy expansion
- Symmetry breaking
- Non-unitarity of SRG transformation

© From the input Hamiltonian

- Past
\Rightarrow Test different input interactions (not systematic)
- Present
\Rightarrow Hamiltonians in WPC available at different orders

- Future

\Rightarrow Renormalisable Hamiltonians \rightarrow EFT truncation error
\Rightarrow Interplay between many-body \& renormalisation
[Contessi, Barnea, Gal 2018]

Uncertainties

\odot From basis \& many-body truncations

- Truncation of one-body Hilbert space
- Truncation of three-body matrix elements
- Approximate treatment of 3 N forces
- Truncation of self-energy expansion
- Symmetry breaking
- Non-unitarity of SRG transformation

\odot From the input Hamiltonian

\Rightarrow Test different input interactions (not systematic)

- Present
\Rightarrow Hamiltonians in WPC available at different orders
Estimates ~5-10\%
\Rightarrow Renormalisable Hamiltonians \rightarrow EFT truncation error
bi Interplav between manv-bodv \& renormalisation

Accuracy of chiral potentials

\odot Accuracy of chiral potentials steadily improving

Rms deviations approaching phenomenological approaches
\circ Ground-state energies \rightarrow rms deviation around $3 \mathrm{MeV}(\sim \mathbf{1 - 1 . 5 \%}$) (cf. $\sim 1 \mathrm{MeV}$ in energy density functionals)
\circ Charge radii \rightarrow rms deviation around $0.02 \mathrm{fm}(\sim \mathbf{0 . 5 - 1 \%})$
(similar in energy density functionals)

Magic numbers

○ Magic numbers: extra-stable combinations of $N \& Z$

Stable
$S_{2 \mathrm{n}}(N, Z) \equiv|E(N, Z)|-|E(N-2, Z)|$

Magic numbers

○ Magic numbers: extra-stable combinations of $N \& Z$

$$
\Delta_{2 \mathrm{n}}(N, Z) \equiv S_{2 \mathrm{n}}(N, Z)-S_{2 \mathrm{n}}(N+2, Z)
$$

	$\begin{aligned} & 1 \mathrm{p}_{1 / 2} \\ & 1 \mathrm{f}_{5 / 2} \end{aligned}$	
		34
28	$2 p_{3 / 2}$	32
	$1 \mathrm{f}_{7 / 2}$	28
20	$1 \mathrm{~d}_{3 / 2}$	

Stable
Unstable

Footprint of deformation

© Reproduction of data deteriorates when moving away from (semi-)magic systems

Behaviour consistent throughout isotopic chains

Correlation with measures of deformation
\Rightarrow Extension to $\mathrm{SU}(2)$-breaking scheme required for doubly open-shell nuclei

Spectroscopy of mid-mass nuclei

\odot Odd-even neighbours reached via one-nucleon addition/removal (example: ${ }^{48} \mathrm{Ca}$)

\rightarrow Qualitative difference in the two channels driven by deficiency of interaction
$\rightarrow \operatorname{ADC}(3)$ only partially corrects for it

Spectroscopy of mid-mass nuclei

\odot Odd-even neighbours reached via one-nucleon addition/removal (example: ${ }^{54} \mathrm{Ca}$)

Exp. $\mathrm{NNLO}_{\text {sat }} \mathrm{NN}+3 \mathrm{~N}(\ln \mathrm{l})$

Evolution of ground- \& first excited state

\square [Sun et al. 2020]
\square [Koiwai et al. 2022]
[Linh et al. 2021]

Extension to Cl chain

Lepton-nucleus scattering

○ Modelling neutrino-40 Ar cross section crucial for next-gen neutrino experiments (e.g. DUNE)

\Rightarrow Cross section needed over a large energy range
\Rightarrow Different processes to be modelling
\Rightarrow Nuclear structure input needed

Lepton-nucleus scattering

○ Modelling neutrino-40Ar cross section crucial for next-gen neutrino experiments (e.g. DUNE)
\odot Quasielestic peak \rightarrow Impulse approximation $\left|\Psi_{f}^{A}\right\rangle \rightarrow\left|\mathbf{p}^{\prime}\right\rangle \otimes\left|\Psi_{n}^{A-1}\right\rangle$
\Rightarrow Reaction process \approx Incoherent scattering on nucleons weighted by spectral function

[Barbieri et al. 2019]

1. Tested on JLAB data (e- scattering)
2. Applied to σ_{ch} for 1 GeV neutrinos

Perspectives

\odot What is the microscopic origin of nuclear superfluidity?
\circ How much is accounted for at lowest order (i.e., how collective is it)?

$\rightarrow \mathrm{ADC}(2)$: lowest order + coupling to 1 p 1 h
\rightarrow Pairing strength too low compared to data

Gorkov ADC(3)

- Coupling to collective fluctuations
- Equations derived [Barbieri, Duguet, Somà 2022]
- Computationally demanding
\rightarrow Scaling increases to N^{6}
\rightarrow Gorkov matrix less sparse
\odot How to access excited states of the A-body system?

$$
\begin{gathered}
\text { Polarisation propagator } \\
\Pi_{\gamma \delta, \alpha \beta}(\omega)=\sum_{n_{\pi} \neq 0} \frac{\left.\left\langle\Psi_{0}^{A}\right| a_{\delta}^{\dagger} a_{\gamma}\left|\Psi_{n_{\pi}}^{A}\right\rangle / \Psi_{n_{\pi}}^{A}\left|a_{\alpha}^{\dagger} a_{\beta}\right| \Psi_{0}^{A}\right\rangle}{\hbar \omega-\left(E_{n_{\pi}}^{A}-E_{0}^{A}\right)+\mathrm{i} \eta}+\Pi^{-}
\end{gathered}
$$

Gorkov polarisation propagator

- Non-trivial extension
- Formal derivation in progress

Perspectives

\odot Doubly open-shell nuclei require breaking of rotational symmetry

- Routine in EDF calculations, few ab initio implementations

- Symmetry-restoration step still missing for GF theory

SU(2)-breaking (Gorkov) GFs

- Builds on CEA expertise
\rightarrow Ab initio PGCM [Frosini et al. 2022]
\circ Computationally demanding (m-scheme)
\rightarrow Exploit/develop optimisation tools
\rightarrow Implementation on the way
$\circ \mathrm{U}(1) \rightarrow$ relatively small error, more problematic for $\mathrm{SU}(2)$

- Yet to be formalised
- Differences to MBPT / CC pose challenge

