A journey into nuclear structure theory

- Cross-sections
- Nuclear
- Photonuclear
- Electronuclear

A nuclear reaction in the laboratory

Typical experiment:

$e^{-}, \gamma, \mathrm{p}, \mathrm{n}, \mathrm{t},{ }^{3} \mathrm{He} \ldots$...Heavy Ions...

Beam energy, reactant polarization

$e^{-}, \gamma, \mathrm{p}, \mathrm{n}, \mathrm{t}$,
${ }^{3}$ He...Heavy
Ions...polarimeter, atomic transitions.

Role of reaction theory:
Reconstruct the unseen history of the reaction and connect to nuclear structure properties

Today's nuclear reactions in the laboratory

An example of experiment:

- Determination of the nature of the products (PID)
- Energy and angular resolution
- Momentum distributions
- γ measurements

Classification of reactions

Entrance channel

$A+a \rightarrow A+a$
$A+\vec{a} \rightarrow \vec{A}+a$
$A+a \rightarrow B+b$
$A+a \rightarrow A+a+\gamma$
$A+a \rightarrow B^{*}+b^{*}+\cdots$
$A+a \rightarrow C^{*} \rightarrow$ decay

Exit channel

Inclusive/exclusive Strongly detectors dependent

Elastic scattering $A(a, a) A$
Spin transfer $A(\vec{a}, a) \vec{A}$
Transfer reaction $A(a, b) B$
Nuclear Bremsstrahlung
Inelastic scattering
Deeply inelastic...
Compound nucleus

Nuclear reactions by classifications

- Direct reaction
- Elastic and quasi-elastic
- Fusion
- Large amplitude Collective motion
- Multi-nucleon transfer
- Deep inelastic

Adapted from : W. Nörenberg and H.A. Weidenmüller,
"Introduction to Heavy-Ion theory", Springer-Verlag 1981

The more peripheral is the collision the highest is the associated cross-section

From reaction observables to nuclei

Nuclear structure

Knockout reactions (high energy)

Transfer reactions (low energy)

Spectroscopic information

From reaction observables to nuclei

Nuclear spectroscopy

Photonuclear reactions

$$
t_{+\infty}
$$

GDR excitation

Collective motion

Bremsstrahlung, radiative capture.
Nuclear force imprints lowenergy resonances.
Sensitive to off-shellness.

From reaction observables to nuclei

Out of equilibrium properties (away from nuclear density)
Reactions at Fermi energy

$$
t_{-\infty}
$$

Definitions of cross-section and other quantities

We define the outgoing solution

$$
\begin{aligned}
& \left|\psi^{+}\right\rangle=\left|\phi_{i}\right\rangle+\left|\phi_{f}\right\rangle \\
& \psi_{k}^{+}(\vec{r}) \xrightarrow{r \rightarrow \infty} A\left(e^{i \vec{k} \cdot \vec{r}}+f(\Theta, \varphi) \frac{e^{i k r}}{r}\right)
\end{aligned}
$$

Differential cross-section

$$
\frac{d \sigma_{\text {channel }}(\theta, \varphi)}{d \Omega}=\frac{\left(\# \text { scattered particle.s }{ }^{-1}\right)(\theta, \varphi)}{(\text { Inc. flux })(\# \text { scatt. centers)(unit of } \Omega)}
$$

$$
\xrightarrow{n=1} \frac{j_{f}(\theta, \varphi)}{j_{i}}
$$

The flux is given by

$$
\vec{J}=\frac{\hbar}{2 \mu i}\left(\left(\psi_{k}^{+}\right)^{*} \nabla \psi_{k}^{+}-\psi_{k}^{+} \nabla\left(\psi_{k}^{+}\right)^{*}\right)
$$

We find the cross section to be:

$$
\frac{d \sigma(\theta, \varphi)}{d \Omega}=|f(\Theta, \varphi)|^{2}
$$

Translational invariance: C.M. frame

The Schrödinger equation

$$
\left[-\frac{\hbar^{2}}{2 m_{A}} \nabla_{A}^{2}-\frac{\hbar^{2}}{2 m_{B}} \nabla_{B}^{2}+V\left(\left|\vec{r}_{A}-\vec{r}_{B}\right|\right)\right] \psi_{k}^{+}\left(\vec{r}_{A}, \vec{r}_{B}\right)=E \psi_{k}^{+}\left(\vec{r}_{A}, \vec{r}_{B}\right)
$$

reduces in the c.m. frame

$$
\left[-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V(|\vec{r}|)\right] \psi_{k}^{+}(\vec{r})=E_{\text {C.M. }} \psi_{k}^{+}(\vec{r})
$$

$$
w=\frac{E}{\hbar}=\frac{\hbar k^{2}}{2 \mu}=k v^{\text {phase velocity }}
$$

$\Psi_{A+a}^{J^{\pi}}=S_{a, A}^{A}\left[\Psi_{a} \Psi_{A} \chi_{k_{\beta}}^{f}(\vec{r})\right]^{j^{\pi}}$

- $S_{a, A}^{A}$ spectroscopic amplitude
- $\left|S_{a, 2}^{A}\right|^{2} \sim$ probability to form the configuration $(a+A)$ in the nucleus A

The Asymptotic Normalization Coefficient (ANC) $C_{C}=\frac{u_{c}(r)}{W_{-\eta_{B}, l+1 / 2}(2 \kappa r)}$ pour $r>R$.

The tail of the wave function is determined by E_{B} and κ

$$
u_{c}(r \rightarrow \infty) \sim x^{-\eta_{B}} e^{-\frac{2 \kappa r}{2}}, \kappa=\sqrt{-\frac{2 \mu E_{B}}{\hbar}}
$$

Phase shifts, resonances E>0

Matching conditions on $u_{k, l \equiv c}(\rho)$ and ${ }^{d u_{k, l=c}(\rho)} / d r$ at $r=R$ between region I and II determines β_{c}.

If we write $\beta_{c}=\tan \delta_{c}, \delta_{c}$ called the phase shift since:

$$
u_{c}(r \rightarrow \infty) \sim \sin \left(\rho-l \pi / 2+\delta_{c}\right)
$$

While the plane wave gives

$$
\sin (\rho-l \pi / 2)
$$

Solution of the scattering problem with R-matrix method

Internal region $V=V_{N}+V_{\text {Coul }}$	External region $V=V_{\text {Coul }}$
$u_{c}(r)=\sum_{n} A_{c n} f_{n}(r)$	$u_{c}(r>a)$ is a known asymptotic
$\square]$	

Decomposition on a Lagrange mesh.
NCSMC can be cast as Bloch-Schrödinger equation:

$$
(C-E I) \vec{X}=Q(B)
$$

And solved using R-matrix, which in the eigen basis of $C-E I$ reads:

$$
R_{c c^{\prime}}=\sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c^{\prime}}}{E_{\lambda}-E}
$$

Simple for binary reacting system, more involved for neutral ternary system and extremely challenging for charged breakup.

Asymptotically vanishing equivalent problem

Complex
scaling

The complex scaling and the resonance states

$$
\widehat{H}(r)=\widehat{T}+\widehat{V}(r) \quad \forall \quad \begin{aligned}
& \widehat{H}(\theta)=e^{-2 i \theta} \widehat{T}+\widehat{V}\left(r e^{i \theta}\right) \\
& \widehat{H}(r)=\widehat{U}(\theta) \widehat{H}(r) \widehat{U}^{-1}(\theta)
\end{aligned}
$$

Aguilar-Balslev-Combes theorem: the resonant states of the original Hamiltonian are invariant and the non-resonant scattering states are rotated and distributed on a 2θ ray that cuts the complex energy plane with a corresponding threshold being the rotation point. Math. Phys. 22, 269 (1971)

$$
\underset{\text { Energy }}{\widehat{H}(r, \theta) \psi(r, \theta)=(\underset{\uparrow}{E}+\underset{\text { Half-life }}{i} \underset{\sim}{\underset{\sim}{x}}) \psi(r, \theta)}
$$

Asymptotically vanishing equivalent problem

The complex scaling and the resonance states

$$
\left.\widehat{H}(r)=\widehat{T}+\hat{V}(r) \quad \Rightarrow \quad \begin{array}{rl}
\widehat{H}(\theta) & =e^{-2 i \theta} \widehat{T}+\hat{V}\left(r e^{i \theta}\right) \\
\widehat{H}(r) & =\widehat{U}(\theta) \widehat{H}(r) \widehat{U}-1
\end{array}\right)
$$

Boundary limit problem
$U(\theta) H(r) U(\theta)^{-1}$

Known
asymptotic
$\psi(r, \theta) \underset{\infty}{\sim} e^{-\boldsymbol{k r} \sin \theta}$

Spatially extended but exponential fall off

Bound state problem

$$
H_{A+B}\left|\psi_{i}^{+}\right\rangle=E_{i}\left|\psi_{i}^{+}\right\rangle
$$

Solve

$$
\left[-\frac{d^{2}}{d r^{2}}+\frac{l(l+1)}{r^{2}}+\frac{2 \mu}{\hbar^{2}} V(r)\right] u_{k, l}(r)=k^{2} u_{k, l}(r)
$$

$$
f_{l}(k)=\frac{e^{2 i \delta_{l}(k)}-1}{2 i k}
$$

$$
\psi_{k}^{+}(\vec{r}) \rightarrow\left(e^{i \vec{k} \cdot \vec{r}}+f(\Theta, \varphi) \frac{e^{i k r}}{r}\right)
$$

$$
\frac{d \sigma(\theta, \varphi)}{d \Omega}, \sigma_{\mathrm{tot}}
$$

Calculate
Differential cross-sections for central potential

$$
\frac{d \sigma(\theta, \varphi)}{d \Omega}=\frac{1}{4 k^{2}}\left|\sum(2 l+1)\left(1-\frac{e^{2 i \delta_{l}(k)}-1}{2 i k}\right) P_{l}(\cos \Theta)\right|^{2}
$$

Reaction theory as a series

The Lippmann-Schwinger equation gives
0

$$
\begin{array}{r}
\psi_{\vec{k}}^{ \pm}(\vec{r})=\frac{e^{i \vec{k} \cdot \vec{r}}}{(2 \pi)^{3 / 2}}-\frac{2 \mu}{\hbar^{2}} \int d^{3} r^{\prime} \frac{e^{ \pm i k\left|r-r^{\prime}\right|}}{4 \pi\left|r-r^{\prime}\right|} V\left(\vec{r}^{\prime}\right) \psi_{\boldsymbol{k}}^{ \pm}\left(\vec{r}^{\prime}\right) \\
\text { with } \vec{k}^{\prime}=k \vec{e}_{r} \\
k^{\prime}=k
\end{array}
$$

Looking for the solution following

$$
\psi_{k}^{+}(\vec{r}) \rightarrow\left(e^{i \vec{k} \cdot \vec{r}}+f(\Theta, \varphi) \frac{e^{i k r}}{r}\right)
$$

We obtain the scattering amplitude:

$$
f(\theta, \varphi)=-2 \pi^{2} \frac{2 \mu}{\hbar^{2}} \int d^{3} r^{\prime} \frac{e^{-i \vec{k}^{\prime} \cdot \vec{r}^{\prime}}}{(2 \pi)^{3 / 2}} V\left(\vec{r}^{\prime}\right) \psi_{\boldsymbol{k}}^{+}\left(\vec{r}^{\prime}\right)
$$

Reaction theory as a series

T-matrix is defined as

$$
f(\theta, \varphi)=-2 \pi^{2} \frac{2 \mu}{\hbar^{2}}\left\langle\varphi_{0, \boldsymbol{k}^{\prime}}\right| V\left|\psi_{\boldsymbol{k}}^{+}\right\rangle=2 \pi^{2} \frac{2 \mu}{\hbar^{2}}\left|T_{\boldsymbol{k}^{\prime}, \boldsymbol{k}}\right|
$$

We deduce the differential cross-section as:

$$
\frac{d \sigma(\theta, \varphi)}{d \Omega}=\left(2 \pi^{2} \frac{2 \mu}{\hbar^{2}}\right)^{2}\left|T_{k^{\prime}, k}\right|^{2}
$$

$T_{k^{\prime}, \boldsymbol{k}}$ is the on-shell [$\left.k=k^{\prime}\right]$ T-matrix element and relates to the S-matrix by

$$
S_{\boldsymbol{k}^{\prime}, \boldsymbol{k}}=\delta\left(\vec{k}-\vec{k}^{\prime}\right)-2 \pi \delta\left(E_{k}-E_{k^{\prime}}\right) T_{\boldsymbol{k}^{\prime}, \boldsymbol{k}}
$$

So $T_{l}(E)=-1 / \pi e^{i \delta_{l}(E)} \sin \delta_{l}(E)$. Similarly $T_{l}(E)=\frac{2 \mu}{\pi \hbar^{2}} \int d r r J_{l}(k r) V(r) u_{l}(r)$

Representation of the born series

From the Lippmann-Schwinger equation we define the Born series expansion

$$
f(\Theta, \varphi)=-2 \pi^{2}\left\langle\varphi_{0, \boldsymbol{k}^{\prime}}\right| V \sum\left(\frac{2 \mu}{\hbar^{2}} G_{0} V\right)^{n}\left|\varphi_{0, \boldsymbol{k}}\right\rangle
$$

We can understand that the unperturbed plane wave undergoes a sequences of multiples scattering events from inside the potential region:

But the series may not converged until all terms are including if the potential is strong enough.

Born Approximation

$$
\chi_{k}^{+}(\vec{r})=\frac{e^{i \vec{k}_{\alpha} \cdot \vec{r}}}{(2 \pi)^{3 / 2}}+\frac{2 \mu}{\hbar^{2}} \int d^{3} r^{\frac{, e^{i k_{\beta}\left|r-r^{\prime}\right|}}{4 \pi\left|r-r^{\prime}\right|}} V\left(\vec{r}^{\prime}\right) \chi_{k}^{+}\left(\vec{r}^{\prime}\right)
$$

Systematic constructive treatment

$$
f_{\text {Born }}=-\frac{2 \mu}{4 \pi \hbar^{2}}\left\langle\boldsymbol{k}^{\prime}\right| V|\mathbf{k}\rangle
$$

In some cases, the free-wave approximation is rather poor starting point.
Suppose $V=V_{\mathrm{MF}}+V_{\text {res }}$ and the solutions of $\left(\nabla^{2}+k^{2}-V_{\mathrm{MF}}\right) \chi_{1}(\boldsymbol{k}, \boldsymbol{r})=0$ are known/computable
One can show $f=f_{1}-\frac{2 \mu}{4 \pi \hbar^{2}} \int d^{3} r^{\prime} \chi_{1}^{-}(\boldsymbol{k}, \vec{r}) V_{\text {res }}\left(\vec{r}^{\prime}\right) \chi_{k}^{+}\left(\vec{r}^{\prime}\right)$
The DWBA approximation consists in:
$\chi_{k}^{+} \rightarrow \chi_{1}^{+}(\boldsymbol{k}, \boldsymbol{r})$ then $f=f_{1}-\frac{2 \mu}{4 \pi \hbar^{2}}\left\langle\chi_{1}^{-}\right| V_{\mathrm{res}}\left|\chi_{1}^{+}\right\rangle$

$$
f(\Theta, \varphi)=\sum_{\beta} f_{\beta}(\Theta, \varphi)
$$

All energetically allowed opened channels β

Note that, in a finite basis, closed channels also contribute but to reaction observables

Multichannel reactions

Scattering wave-
function

$$
\psi_{k}^{+}(\vec{r}) \rightarrow\left(e^{i \vec{k} \cdot \vec{r}} \Psi_{a} \Psi_{A}+\sum_{\beta} f_{\beta}(\Theta, \varphi) \frac{e^{i k_{\beta} r}}{r} \Psi_{i_{\beta}} \Psi_{I_{\beta}}\right)
$$

$$
\frac{d \sigma_{\beta}}{d \Omega}=\frac{\vec{J}_{f} \cdot d \vec{S} / r^{2}}{\vec{J}_{i} \cdot \hat{k}}
$$

Since $\vec{\jmath}=\rho \vec{v}$ with \vec{v} the wave vector, we have that :

- Elastic scattering $\quad v_{\beta} / v=1$

$$
\frac{d \sigma_{\beta}}{d \Omega}=\frac{v_{\beta}}{v}\left|f_{\beta}(\Theta, \varphi)\right|^{2} \quad
$$

- Inelastic scattering $\quad v_{\beta} / v \neq 1$

$$
\frac{d \sigma_{\beta}}{d \Omega}=\frac{v_{\beta}}{v}\left|\breve{f}_{\beta}(\Theta, \varphi)\right|^{2}
$$

Channels will all interfere...

$$
|a+A\rangle
$$

Elastic channel with $\frac{v_{\beta}}{v}=1$, always opens

$$
\left|a^{*}+A^{*}\right\rangle
$$

Inelastic scattering $\frac{v_{\beta}}{v} \neq 1$,
Energetically opens if $E_{\text {c.m. }}$ is greater than the reaction threshold

$$
\begin{gathered}
|b+C\rangle \\
|b+d+C\rangle
\end{gathered}
$$

All other reaction channels

Influence of the non-elastic channels on cross-section

With only elastic channel

$$
\begin{aligned}
\psi_{k}^{+}(\vec{r}) & \rightarrow\left(e^{i \vec{k} \cdot \vec{r}}+f(\Theta, \varphi) \frac{e^{i k_{\alpha} r}}{r}\right) \\
u_{\alpha, l}(r>\mathrm{R}) & =A_{\alpha, l} \rho\left(H_{l}^{-}(\rho)-S_{\alpha, l} H_{l}^{+}(\rho)\right)
\end{aligned}
$$

The conservation of the momentum leads to $k=k_{\alpha}$, the conservation of the flux [which implies the unitarity of the S-matrix i.e. $\left.S_{\alpha, l} S_{\alpha, l}{ }^{*}=1\right]$ means $S_{\alpha, l}=e^{2 i \delta_{l}, \delta \in \mathbb{R}}$

$$
\begin{gathered}
u_{\alpha, l}(r>\mathrm{R})=A_{\alpha, l} \rho\left(H_{l}^{-}(\rho)-S_{\alpha, l} H_{l}^{+}(\rho)\right) \\
u_{\beta, l}(r>\mathrm{R})=-A_{\beta, l} \rho S_{\beta, l} H_{l}^{+}(\rho)
\end{gathered}
$$

Where $S_{\beta, l}=\sqrt{v / v_{\beta}} \tilde{S}_{\beta, l}$ and $\tilde{S}_{\beta, l}=e^{2 i \delta_{l}, \delta \in \mathbb{C} \text {. Total energy is }}$ conserved but $k_{\beta} \neq k$ due to energy consumed by the Q value. The flux is distributed among channels:

$$
\left|S_{\alpha, l}(E)\right|^{2}+\sum\left|S_{\beta, l}(E)\right|^{2}=1
$$

Elastic, Reaction and Total cross section

Elastic channel:

$$
\sigma_{\mathrm{el}}=\frac{\pi}{k^{2}} \sum(2 l+1)\left|1-\tilde{S}_{\alpha, l}\right|^{2}
$$

Inelastic channels:

$$
\sigma_{\mathrm{in}}=\frac{\pi}{k^{2}} \sum(2 l+1)\left|\tilde{S}_{\beta, l}\right|^{2}
$$

Sum of all inelastic channels (absorption cross-sec.):

$$
\sigma_{\mathrm{abs}}=\frac{\pi}{k^{2}} \sum(2 l+1)\left(1-\left|\tilde{S}_{\alpha, l}\right|^{2}\right)
$$

from $\left|S_{\alpha, l}\right|^{2}+\sum\left|S_{\beta, l}\right|^{2}=1$, and total cross-section

$$
\begin{gathered}
\sigma_{\mathrm{tot}}=\sigma_{\mathrm{el}}+\sigma_{\mathrm{abs}} \\
=\frac{2 \pi}{k^{2}} \sum(2 l+1)\left(1-\operatorname{Re}\left(\tilde{S}_{\alpha, l}\right)\right)
\end{gathered}
$$

Optical potential

Incoming Outgoing
Scattering equation with an imaginary potential

$$
\left(\Delta+k^{2}-\frac{2 \mu}{\hbar^{2}}(V(\vec{r})+i W(\vec{r})) \varphi(\vec{r})=0\right.
$$

With start with the conservation of matter

$$
\frac{d \rho}{d t}=-\vec{\nabla} \cdot \vec{J}
$$

Here we have $\hbar \vec{\nabla} \cdot \vec{J}=2 W(r) \rho(\mathrm{r})$ we immediately obtained the lost outgoing flux as $-\frac{2}{\hbar} \int d^{3} r W(r) \rho(\mathrm{r})$, the absorption cross-section reads

$$
\sigma_{\mathrm{abs}}=-\frac{2}{\hbar v} \int d^{3} r W(r) \rho(\mathrm{r})
$$

In practice, $W(r)$ is parametrized by various Wood-Saxon functions:

$$
W(r, E)=-W^{\mathrm{vol}^{(}}(E, r)+4 a^{\operatorname{sur}} W^{\operatorname{sur}}(E) \frac{d}{d r} f(r)+W^{\text {so }}(r, E)
$$

$(a+x)=A$
(b)
(a)

At high energies, we assume internal dof are frozen (spectator nucleons) only the transferred particle ($\mathrm{n}, \mathrm{p}, \mathrm{d}, \ldots$) ic considered explicitly:

$$
A+b \rightarrow a+B \Rightarrow(a+x)+b \rightarrow a+(b+x)
$$

The interaction potentials should be between all constituents [3-body problem]:

Entrance

$\Psi_{A=(a+x)}^{J^{\pi}}=S_{a, x}^{A}\left[\Psi_{a} \Psi_{x} \chi_{k_{\beta}}^{f}(\vec{r})\right]^{J^{\pi}}+\cdots \quad \Psi_{B=(b+x)}^{J^{\pi}}=S_{b, x}^{A}\left[\Psi_{b} \Psi_{x} \chi_{k_{\beta^{\prime}}}^{f}(\vec{r})\right]^{J^{\pi}}+\cdots$

$\left\langle\chi_{1}^{-}\right| V_{\mathrm{res}}\left|\chi_{1}^{+}\right\rangle \propto\left\langle\Psi_{b} \Psi_{x} \chi_{k_{\beta^{\prime}}}^{f}(\vec{r})\right| V_{\mathrm{res}}\left|\Psi_{a} \Psi_{x} \chi_{k_{\beta}}^{f}(\vec{r})\right\rangle$

Extracting nuclear data for astrophysics

Extracting spectroscopic information

Spectroscopic information dependance on Δ separation energy

Other models/reactions:

- no apparent dependence on the Δ_{S}
- compatible with
- (e,e'p) reactions on stable targets
- predictions of ab initio calculations

Cluster structures using knockout

Observe clustering in nuclei, particularly the type of clustering (d, $\mathrm{t}, \alpha,{ }^{6} \mathrm{He},{ }^{9} \mathrm{Li}$ etc..).

Alpha cluster spectroscopic factor S_{α}
${ }^{10} \mathrm{Be}$ GS wave function

From : D. Beaumel et J.P. Ebran GDR RESANET
Main uncertainties :

- Optical potentials (~ 25%)
- Cluster wave functions
S_{α} usually extracted from a normalization procedure DWIA cross-section (factorized form)

W.H. Dickhoff et al. JPG:NPP44 2017

Results of global fit to date of a dispersive optical model ~ 32 parameters

« Data driven »

Optical potential are necessary for reaction theory to extract any information on nuclear structure.

For example:
Extraction of neutron and proton self energies to compute the neutron skin of ${ }^{48} \mathrm{Ca} 0.249 \pm 0.023 \mathrm{fm}$

Ab initio inputs and optical potentials for reaction theory

- Ab initio methods can provide asymptotic properties of exotic nuclei w.f.
- Eventually optical potential

Needs reaction models:

- CDCC.
- Eikonal.
- Time-dependent etc...

Problems:

- Need inputs $\left(\mathrm{E}_{\mathrm{b}}, \mathrm{E}_{\mathrm{r}} \tau_{\mathrm{r}}\right)$, not always known.
- Dependent on optical pot.
- Need detail of structure.

Time-dependent approach: Hartree-Fock

Nuclear reaction with normal/superfluid nuclei on a 3D position mesh.
Hartree-Fock is a standard tool, the wave function $\left|\Psi_{i}\right\rangle$ is a Slater determinant and evolves by

$$
i \hbar \frac{d \rho}{d t}=[h(\rho), \rho]
$$

this generalizes to

$$
i \hbar \frac{d R}{d t}=[\mathcal{H}(R), R], R=\left(\begin{array}{cc}
\rho & \kappa \\
-\kappa^{*} & 1-\rho
\end{array}\right)
$$

quasiparticle evolution treats nuclear pairing.
Simenel, Lacroix, Avez, arXiv:0806.2714v2
Yet TDHB is too complicated to be applied systematically \rightarrow TDBCS limit of TDHFB

[^0]$$
\underset{\substack{\text { al. } \\ \text { aRCB2(2010) }}}{\Delta_{i, j}=\delta_{i, j} \rightarrow|\Psi(t)\rangle=\prod_{k>0}\left(u_{k}(t)+v_{k}(t) a_{k}^{+}(t) a_{k}^{+}\right)|-\rangle}
$$
G. Scamps and D. Lacroix, PRC88 (2013).

Pairing effect on nuclear collective motion: GDR

- Inclusion of pairing provides realistic ground state deformation
- It allows the description of mid-shell nuclei
- It includes partially correlation effects

Strength distribution in deformed 34 Mg

- Almost no difference between TDHF+BCS and TDHFB (QRPA)
- Main effect of pairing is to set the deformation

- One way to solve the many-body problem

Can address bound and low-lying resonances (short range correlations)

Advantage of HO Cl methods:

1. Center of mass is factorized.
2. Mathematically possible to derived s.p. to Jacobi coordinates transformation.
3. Fourier transform is trivial: NCSM, RGM with HO Cl is equivalent in momentum or position space.

- One way to solve the many-body problem when two scales appear

$$
\Psi_{R G M}^{(A)}=\sum_{\substack{v \\ \text { Relative wave } \\ \text { function } \\ \text { (unknown) }}} \int d \vec{r} g_{v}(\vec{r}) \hat{A}_{v}\left|\Phi_{v \vec{r}}^{(A-a, a)}\right\rangle
$$

Can address bound and low-lying resonances (short range correlations)

NCSM/RGM
Cluster formalism for elastic/inelastic

Many-body basis is twice as large as $\Psi_{N C S M}$

- $\psi_{\alpha_{1}}^{(A-a)}$ spans $N_{\text {max }}$
- $\psi_{\alpha_{2}}^{(a)}$ spans $N_{\text {max }}$
- One way to solve the many-body problem when two scales appear

Can address bound and low-lying resonances (short range correlations)

Design to account for scattering states (best for long range correlations)

- Our best ansatz combines both wave functions

$$
\Psi_{N C S M C}^{(A)}=\sum_{\lambda} C_{\lambda}\left|A \lambda J^{\pi} T\right\rangle+\sum_{v} \int d \vec{r} g_{v}(\vec{r}) \hat{A}_{v}\left|\Phi_{v \vec{r}}^{(A-a, a)}\right\rangle
$$

NCSMC
Which $N_{\text {max }}$ for $\Psi_{N C S M C}^{(A)}$?

In configuration interaction methods we need to soften interaction to address the hard core. We can use the Similarity-Renormalization-Group (SRG) method

$$
\begin{aligned}
& H_{\lambda}(\theta)=U_{\lambda} H(\theta) U_{\lambda}^{T} \\
& \text { Similarity } \\
& \left\{\begin{array}{c}
\frac{d H_{\lambda}(\theta)}{d \lambda}=-\frac{4}{\lambda^{5}}\left[\eta(\lambda), H_{\lambda}(\theta)\right] \\
\eta(\lambda)=\frac{d U_{\lambda}}{d \lambda} U_{\lambda}^{T}
\end{array}\right.
\end{aligned}
$$

Consistent evolution of the imaginary part

Example: Structure of ${ }^{6}$ Li continuum

Example: Structure of ${ }^{6}$ Li continuum

${ }^{4} \mathrm{He}(\mathrm{d}, \mathrm{d}){ }^{4} \mathrm{He}$ angular distribution

Benchmark: scattering phase shifts NCSMC/FY

R. Lazauskas, PRC 97 (2018).

Good agreement between the two methods.

Some of the shortcomings of the nuclear interaction can already be probed in p-shell nuclei through reactions.
[known since the work of K. Nollett]

- The 3N interactions influence mostly the P-waves.
- Conservative estimate of EFT accuracy is in the range of 3 N force effects.

Single particle interpretation

Sensitivity to c_{D} and c_{E}

- NN N ${ }^{4} \mathrm{LO}+3 \mathrm{~N} \mathrm{~N}^{2} \mathrm{LO}$ cannot reproduce the p-wave splitting.
- Tighter posterior distribution if the properties of the ${ }^{5} \mathrm{He}$ are included in the fit.

Primordial Nucleosynthesis (blue)
ITER design (Cadarache, France)

Convergence of $3 / 2^{+}$resonance		
$N_{\text {max }}$	$\begin{gathered} \hbar \omega=20 \mathrm{MeV} \\ \Lambda_{S R G}=2.0 \mathrm{fm}^{-1} \end{gathered}$	$\begin{gathered} \hbar \omega=16 \mathrm{MeV} \\ \Lambda_{S R G}=1.7 \mathrm{fm}^{-1} \end{gathered}$
7	78.70\%	42.29\%
9	45.04\%	18.85\%
11	25.68\%	8.41\%
13	13.78\%	-
${ }^{5} \mathrm{He}$		continuum

- $3 / 2^{+}$resonance converges the fastest with $\hbar \omega=16 \mathrm{MeV}$, understood from major shell splitting.
- $n-{ }^{4} \mathrm{He}$ elastic scattering independent of HO frequency and SRG flow.

- 3N force impacts:
> The threshold position (i.e. reproduction of nuclear masses).
The positions and splitting between the
$3 / 2^{+}$and $1 / 2^{+}$resonances.
- Tensor force is essential to model the ${ }^{3} \mathrm{H}(d, n)^{4} \mathrm{He}$ transfer reaction.

Residual short force + three-body leads to strange universal laws!

2 vs 3

Universal correlations between observables due to the few-body nature of the system

1. Light nuclei are close to unitarity.
2. Exotic nuclei g.s. in the vicinity of Efimov states.
3. Metastable ${ }^{6}$ Li g.s. shows universal behavior.

${ }^{11}$ Be 1n Halo nuclei : EM probes

Halo structure

$$
\begin{aligned}
& \mathrm{N}_{\text {max }}=10 \text { model space i.e. } r \approx 7 \\
& \mathrm{fm} \text { HO spatial box }
\end{aligned}
$$

E1 transition bound to bound

	NCSM	NCSM- pheno	Expt.
$B\left(E 1 ; \frac{1}{2}^{+} \rightarrow \frac{1}{}^{-}\right.$ $\left[e^{2} \mathrm{fm}^{2}\right]$	5.10^{-6}	0.118	$0.102(2)$

E1 transition bound to continuum

$\mathrm{N}_{\max }=12$ model space i.e. $r \approx 8$ fm HO spatial box
${ }^{6} \mathrm{He}$ g.s. energy, proton and matter radii

g.s. energy, proton and matter radii from chiral NN force are close to data.

Nuclear physics at the edge of stability
Zoom, June 28- July 1" 2021
Abstract
The physics at the edge of the nuclear stability is a multifaceted phenomenon ranging from the cleanest emergence of few-body physics from a set of many interacting nucleons to the complicated evolution of nuclear shells, clustering, evolution of nuclear superfluidity at the drip line as well as abrupt changes in reaction cross sections. This broad topic has strong connections to nuclear few-body systems. The objective of this workshop is to bring together vario cientific communities which are addressing similar universal concepts and methodologies related to open quantum systems, We plan to review which
 nd provide in the future and with the help of the participants/community, propositions for experimental tools and theoretical models to be developed.

[^0]: S. Ebata, T. Nakatsukasa et al. PRC82 (2010)

