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Challenges

We consider nucleon scattering off a target nucleus
This is a (A + 1)-body problem.

Involving continuum, one can solve the few-body problem exactly.
Here we are dealing with a many-body problem.

For example Koning-Delaroche global potential is intended for A ranging from 24 to 209

(A. Koning and J.P. Delaroche, NPA 713, 231 (2003))
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Feshbach talking about Weisskopf

"His was an unquenchable desire to understand the essential physical elements involved in a phenomenon to strip away the

complexities of a detailed explaination and to make visible the underlying ideas and concepts.”

(LNS 1992 Symposium https : / / www .youtube.com/watch?v = 6106 GYMBVAE)
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Challenges

We consider nucleon scattering off a target nucleus
- Thisis a (A + 1)-body problem.

- Involving continuum, one can solve the few-body problem exactly.
Here we are dealing with a many-body problem.

For example Koning-Delaroche global potential is intended for A ranging from 24 to 209

(A. Koning and J.P. Delaroche, NPA 713, 231 (2003))

Feshbach talking about Weisskopf
"His was an unquenchable desire to understand the essential physical elements involved in a phenomenon to strip away the

complexities of a detailed explaination and to make visible the underlying ideas and concepts.”

(LNS 1992 Symposium https : / /www.youtube.com/watch?v = 6/06 GyMBVAE)

Main ideas

- Go from a (A + 1)-body to a 2-body problem made of a target and a projectile.

- Feed phenomenology with the main degrees of freedom obtained from microscopy

— Optical Potential

(Feshbach, Porter, Weisskopf, Phys. Rev. 96, 448 (1954))




PHYSICAL REVIEW

VOLUME 96,

Feshbach, Porter, Weisskopf, Phys. Rev. 96, 448 (1954)

NUMBER 2 OCTOBER 15, 1954

Model for Nuclear Reactions with Neutrons*

H. FesuBach, C. E. PorTer,f AND V. F. WEISSKOPF
Department of Physics and Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
(Received June 28, 1954)

A simple model is proposed for the description of the scattering
and the compound nucleus formation by nucleons impinging upon
complex nuclei. It is shown that, by making appropriate averages
over resonances, an average problem can be defined which is
referred to as the “gross-structure” problem. Solution of this
problem permits the calculation of the average total cross section,
the cross section for the formation of the compound nucleus, and
the part of the elastic-scattering cross section which does not
involve formation of the compound nucleus. Unambiguous
definitions are given for the latter cross sections.

The model describing these properties consists in replacing the
nucleus by a one-body potential which acts upon the incident
nucleon. This potential V=Vo+iV: is complex; the real part
represents the average potential in the nucleus; the imaginary
part causes an absorption which describes the formation of the
compound nucleus. As a first approximation a potential is used
whose real part Vo is a rectangular potential well and whose
imaginary part is a constant fraction of the real part V,=¢Vo.

This model is used to reproduce the total cross sections for
neutrons, the angular dependence of the elastic scattering, and
the cross section for the formation of the compound nucleus.
It is shown that the average properties of neutron resonances,
in particular the ratio of the neutron width to the level spacing,
are connected with the gross-structure problem and can be
predicted by this model.

The observed neutron total cross sections can be very well
reproduced in the energy region between zero and 3 Mev with a
well depth of 42 Mev, a factor ¢ of 0.03, and a nuclear radius of
R=1.45X10"24% cm. The angular dependence of the scattering
cross section at 1 Mev is fairly well reproduced by the same
model. The theoretical and experimental values for the ratios of
neutron width to level distance at low energies and the reaction
cross sections at 1 Mev do not agree too well but they show a
qualitative similarity.
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"It is this gross-structure problem and not the actual rapidly varying cross sections

which we intend to describe by means of a one-particle problem with the potential”




Everything starts from e

erimental results

(A. Koning and J.P. Delaroche, NPA 713, 231 (2003))
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Everything starts from experimental results

n+209Pu (Figure from P. Tamagno)
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We consider ' the width of the resonances and D the distance in energy between those resonances

- Resolved Resonance Regime: D > T
- Unresolved Resonance Regime: D < I T X 1/r

- Continuum




Another experimental point of view

Proton emission spectrum p+54Fe © 61.7 MeV @ 60 deg.
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- Compound nucleus 7 ~ 107 10s ("delayed”)
- Pre-equilibriium

- Direct reaction 7 &~ 10~%?s ("prompt")




Direct Reactions

Nuclear reactions that occur in a time comparable to the time of transit of an incident particle across
the nucleus (~102 s) are called direct nuclear reactions. Interaction time is critical for defining the
reaction mechanism. The very short interaction time allows for an interaction of a single nucleon
only (in extreme cases).

The cross-sections for direct reactions vary smoothly and slowly with energy in contrast to the compound
nucleus reactions. These cross-sections are comparable to the geometrical cross-sections of target nuclei. Types
of direct reactions:

Elastic scattering in which a passing particle and targes stay in their ground states.
Inelastic scattering in which a passing particle changes its energy state. For example, the (p, p’) reaction.
Transfer reactions in which one or more nucleons are transferred to the other nucleus. These reactions

are further classified as:
« Stripping reaction in which one or more nucleons are transferred to a target nucleus from passing
particles. For example, the neutron stripping in the (d, p) reaction.
« Pick-up reaction in which one or more nucleons are transferred from a target nucleus to a passing
particle. For example, the neutron pick-up in the (p, d) reaction.
Break-up reaction in which a breakup of a projectile into two or more fragments occurs.
Knock-out reaction in which a single nucleon or a light cluster is removed from the projectile by a
collision with the target.




Compound nucleus

Direct Reactions vs. Compound Nucleus Reactions

Direct Reactions

 The direct reactions are fast and involve a
single-nucleon interaction.

« The interaction time must be very short
(~10%25).

» The direct reactions require incident particle

energy larger than ~ 5 MeV/Ap. (Ap is the

atomic mass number of a projectile)

Incident particles interact on the surface of a

target nucleus rather than in the volume of a

target nucleus.

Products of the direct reactions are not

distributed isotropically in angle, but they

are forward-focused.

Direct reactions are of importance in

measurements of nuclear structure.

Compound Nucleus Reactions

« The compound nucleus reactions involve many
nucleon-nucleon interactions.

A large number of collisions between the
nucleons leads to a thermal equilibrium
inside the compound nucleus.

The time scale of compound nucleus reactions
is1018s-107%s.

The compound nucleus reactions are usually
created if the projectile has low energy.
Incident particles interact in the volume of a
target nucleus.

Products of the compound nucleus reactions
are distributed near isotropically in angle
(the nucleus loses memory of how it was
created - Bohr’s hypothesis of independence).
The decay mode of the compound nucleus
does not depend on how the compound
nucleus is formed.

« Resonances in the cross-section are typical for
the compound nucleus reaction.




Pre-equilibrium

the separation of nuclear reaction mechanisms into direct and compound is too
simplistic...

Spectre des protons émis:
>*Fe(p,p’)**Fe’
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Many processes to describe: need for models and codes

. organized in a consistent way.

TALYS

TALYS-Related Software and Databases

TALYS and the TALYS-related packages are op atasets (GPL License simulation of nuclear resctions.

TALYS, CONRAD, EMPIRE... -

sjan Koning, Stepha

Direct (shape) elastic

— Elastic

Transmission coefficients

L .
Inelastic

Direct inelastic

Philosophy of Talys: " First completeness then quality”




Example of TALYS calculation

20 MeV 2mBi(n,}m)
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Figure 4.10: 2°Bi (n,xn) spectrum at 20 MeV. Experimental data are obtained from [9].
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A first definition of optical potential

Averaging energy separates the prompt part of the reaction from the delayed part
— Optical potential describes the prompt contribution

10° 10" 20 40 60 80 100 120 140 160 180 200 220 240
E(MeV) E(MeV)

Fig. 2. Comparison of predicted neutron total cross sections and experimental data, for nucides in the Mg-Ca mass region, for the cnergy range 10 keV=250 MeV. For
‘more details, see Section 4.1

(A. Koning and J.P. Delaroche, NPA 713, 231 (2003))




Challenges

Picture from C. Hebborn et al. J. Phys. G: Nucl. Part. Phys. 50 (2023) 060501

Known isotopes

W Stable isotopes
ReA Coulomb barrier beams > 500 pps
FRIB fast beams > 1 pps

#  Koning and Delaroche

Astrophysical r-process
Astrophysical p-process
Astrophysical s-process
Astrophysical rp-process




Challenges

Picture from C. Hebborn et al. J. Phys. G: Nucl. Part. Phys. 50 (2023) 060501

Known isotopes

W Stable isotopes
ReA Coulomb barrier beams > 500 pps
FRIB fast beams > 1 pps

#  Koning and Delaroche

Astrophysical r-process
Astrophysical p-process
Astrophysical s-process
Astrophysical rp-process

- Need for potentials valid for exotic nuclei

- Extrapolation driven by microscopy?
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Reminder on cross section

Consider a beam of particles hitting a thin sheet of material

- N; = J;S incident particles hit the surface per second

N outgoing particles counted per second (only count particles belonging to an outgoing channel c. For instance elastic
channel: detection of a particle with the same energy than the incident particle)

L . N, N,
- Probability P¢ of reaction: P. = 3¢ = %
Y Fe c= W T IS

detector

collimator -
beam of -7
particles A I /

target
p—
—_—

=TT /619“\»”

The cross section o is an effective area associated to one target nucleus, that provides a measure of the probability of
reaction in the channel c.

Y. = ocNt (Nt = nSdx number of target nuclei) is the portion of the surface S which, when hit by the incident particle,
will lead to the reaction channel c.

¢ N¢ Ne 1 reaction rate
P. = — Oc=—— =

s s’ Ne J;  incident flux




Schrodinger equation with a spherical potential

Hig) = (T+ V) = El)
/ C(T VI )dd = Elely)

e )
Kinetic part
p2
T = % Potential part
PPy = /(r|P2|p><p|r’>dp (r|VI|p) = /dr’<r\V\r’><r’\¢>
S KLRGIAL: Wvidy = Vi)
1 2 dp.(rv A
_ £ P (rr )d Local potential
@rh)? /" € P
_ —ﬁzé”(r—r,) V(r, "I) = V(r)é(r, r/)
H2
FTIY) = ———283(r)
2m
- v




Schrodinger equation with a spherical potential

2
B0+ [ Vi) = Evln)

Spherical coordinates,

|2
A= Pg‘*‘j 2 2 2
hc1d |
r
Tl = |- =
i o (rTl) [ omT 2er}iﬁ(r)
pr= —h"——=r
r r dr?

Using the following multipole expansions and projecting on |/jm)

W)= W%mij(F) and vyn(r,r) = [[ did¥ V@V e)YF)
fjm

Integro-differential Schrédinger equation

R [ d®  I(+1
— [ﬁ _ X 2 ) uljm(r)+/dr'ruljm(r,r’)r/uj/m(r/) = E ujm(r)

2m




Absorption by a complex potential

Probability current:
h
i) = =i (" (NV(r) — 6(NVe™(r))
2p
Schrédinger Equation:
2
<h— 974 (U + fvv(r))> o(r) = Eo()
2
¢ () x {S.E.} — o(r) {S.E.}":

- R g 2_ 2 2
Flux variation: V.j = E(V (r)y = V()N = EW(r)\¢(r)|

— Negative imaginary potential: flux absorption
— Positive imaginary potential: flux creation




Absorption by a complex potential

Probability current:
h
i) = *ia (6™ (NVe(r) — (V™ ()
Schrédinger Equation:

L2
C—H V2 4 (U() + fvv(r))> o(r) = Ea(r)

#"(r) x {S.E.} — 6(r) {S.E.}":

- R g 2_ 2 2
Flux variation: V.j = E(V (r)y = V()N = EW(r)\¢(r)|

— Negative imaginary potential: flux absorption

Pasi 1§l H
— Positiv yp flux-creation




Elastic cross section

V(r)

At r — oo, the incident wave function is a plane wave X,(r) = exp(ik.r) and the scattered wave is spherical
exp(ikr

Xer(r) = F(2) =20,

The complete wave function reads

x(r = o0) = exp(ik.r) + f(Q)M

where f is the scattering amplitude and  is the solution of the Schrodinger equation

(H-E)x=0




Elastic cross section

We want to determine do¢(§2) the element of elastic cross section in the direction Q. It reads

_ i)

Jinc

doe ()
with jo () the exit flux in the direction Q and j;,. the incident flux
) h
Jine = —k.
n
the scattered flux in the direction Q through the solid angle d€2 is

exp(—ikr) i (r’(Q) exp(ikr)) @ exp(ikr) i <F* @ exp(—ikr) )}

r dr

h
jer(@)rPde = — [ (@)

2ip r dr r r

Developing and simplifying, we get
h
Jel ()2 dQ = |F(Q)]? = kdQ
o
and finally, we get the expression for the differential cross section

dog

_ 2
o - [F(Q)]




Partial-wave expansion

All the information about scattering is contained into ()

Let's now consider the partial wave exapansion of the Schrodinger equation:

‘ (& - M — 2V () + k) w(r) =0 ‘

2uE
k= el
and
1>
X)) = > (20 +1) i wi(r) Pi(cos(®)),
=0

Taking the limit r — oo

&2
(F + k2> w(r — o0) = 0.
’

i*leuf, C1k7

ile—id g—ikr
w(r — o0) =a

20

with &, the phaseshift. The effect of the potential is shift the asymptotic part of the wave function.




Partial-wave expansion

18
1k
1
ji(kr) [
i N
P
2~ R0 N
T > r
0 a T~ _~

Schematic representation of the effect on the free radial wave ji(kr) of (a) a
repulsive (positive) potential, (b) an attractive (negative) potential.

The phaseshift is energy dependent, real if the potential is real, complex if the potential is complex. In the spherical case, it
is diagonal in (1,j) with j=I+s.

(Picture from C. Joachain)




Partial-wave expansion

We proceed now to the partial-wave expansion of the solution

=iki 24 1) B(os((?))(( ye le L42ik S
1=0

using the partial-wave expansion of the plane wave

R = T o0 = (21 4-1) it (k) Fi(cos0)
=0

The expansion of the solution can also be obtained using
1 & M
X(7) = =320 +1) i w(r) Pi(cos(0),
=0

and

( ) =Lt gikr _ =iy =ikt

w(r —o0) =q—————
21

then

L 1 —in € e
X(7) = —k (21 + 1) P(cos(0))a; | (—)"*e ‘T +e ’T .

ng




Partial-wave expansion

By identification of the two solutions, we get
1= qe ™
and

1+ 2ikf) = e

Finally we get an expression for the partial-wave expansion of the scattering amplitude

fi o201 _ 1)

where S; = exp(2i4;) is called S-matrix or scattering matrix.
Thus

1 >
f(8) = — > (21 +1)(S; — 1)P)(cos 0)
2ik 1=
Then we have the cross section

dog
dQ

= |fO)f

We finally get the expression for the differential cross section

dog
dQ

1
P Z (21 +1)(2" +1)(S; — 1)(S}; — 1)Pi(cos 0)P (cos 0)
1,I’=0




Example of differential cross section




Integral cross sections

One can get the integral cross section by integrating the differential cross section on the
angle

! doe
Ue/—[l o) d(cos0)

e > 2
Tel = p E |5[71|
1=0




Integral cross sections

(zero-spin projectile and target)

s \

Shape Elastic cross section
w 2
osg = EZII*SZI
’
Inelastic cross section
s
_ 2
T Inel = ﬁ;l_‘sd

Total cross section

™
or = 2 Z 1 — Re(Sy)
2

\. J

28,

with Sy = e




Example of integral cross section

Total Elastic Reaction

Fic. 4 - Sections efficaces Totale (rose), Elastique (bleu) et de Réaction (vert) d'un neutron
sur du 2P entre 10 keV et 200 MeV.




Example of integral cross section

Total Elastic Reaction

Fic. 4 - Sections efficaces Totale (rose), Elastique (bleu) et de Réaction (vert) d'un neutron
sur du 2P entre 10 keV et 200 MeV.

We know how to relate the cross section to phaseshift.
Now we need to determine the phaseshift




Practical resolution...

Matching with asymptotic form...

. A A ikR
(T+V—EWRO=0  y™"RH) =" +f(meT

NN
\VARVAY

R,

R, : some large R where V(R) =0 (potential dependent)

(Picture from C. Elster)




Practical resolution...

Matching with asymptotic form...

Numerical resolution

. ) ikR
[T +V —EW(R6) =0 YR 0) = & 4 f (0)
VAL
arR,

R, : some large R where V(R) =0 (potential dependent)

(Picture from C. Elster) %




Practical resolution...

Matching with asymptotic form...

Numerical resolution Analytical asymptotic
. QikR
[T+V —ElY(RH) =0 YIYM(R, ) = ek +_f((-))T
/ \/ ®
ajyR,

R, : some large R where V(R) =0 (potential dependent)

...Gives you access to phaseshift
(Further in the talk, we'll see how it works numerically)
(Picture from C. Elster)




Going back to energy averaging...

$=(5+5
Averaged cross section Averaged potential
T - T
e) = 11-5P) G = - (S)P
T 2 _ ™ 2
{or) = 31151 or = 1= 1S)F)
0 _ T
(or) = 1z(l—RelS]) o1 = 15(1 = Re[{5)])
(cg) = Oe+oce
(or) = Jr—o0cE
(o) = o7t
Compound elastic » TALYS: Hauser-Feshbach/ Koning-Delaroche
OcE = %(GF) » particularly relevant for neutron scattering

below 10 MeV



Coupled Channel calculations

In the case of deformed rotating or/and vibrating targets...

(Ta = (@lV]a) + ca = E)ua(ra) = = D (alVla')uys(ra)
o #ao

@ Generalized optical potential

@ Phaseshift is not diagonal anymore




Frarnework

-
S 2
gt N
Hop +fro——tHop | [0) = EP|T)<
ik \\fQE HQQ +’LE Q/}/) ") i éf/
< /*"\ i
> \P VEff:P, %
< % (B — T — (@0l ¥lvo)) lwo) =D (ol Vilabi)|w:)
N - i#0
< 2 | (B =T — @wl%len)) lwn) =D (n| Vi) lws)
i#=N
\4 < o

One-body potentlals

(Full)-Folding, Local Density Approximation (LDA).

Two-body interaction : one-body density matrix, radial densities. 5

Slide from M. Dupuis




9 Self-energy & Optical Potential




Definitions

The state |, tg) of a particle with quantum numbers « at time ty evolves in

— L H(t—1
lo to;6) = e~ B0 o, 1)
at a time t (t > tp) and for a time-independent Hamiltonian.
i
— L H(t—
vt = (lagie) = (le” 70, )

[ drwle™ D ey e 1)
- ih/dr'G(r, it — t)b(F, to)

where G is referred to as

Propagator or Green's Function

Gr, vt — o) = —é<r|e‘%““‘f°’|r'>




Propagator or Green's Function

Glr,rie =) = ——(le” BMTO)r)

bt =i [ a6 - v )

The wave function at r and t is determined by the wave function at the original time ty, receiving contributions from all r’
weighted by the amplitude G.




Operators and Statistics

Second quantization
'J,DT(r, t) creates a particle at (r, t)
4 (r, t) annihilates a particle at (r, t)

Bose-Einstein statistics (-)/Fermi-Dirac statistics (+)

[wien. vl = o
WO vy = o
[ve. 007w 0], = 8-




Glr,vit — to) — = trle” IOy = 2 (ojare” BT 05l o)

- ‘éZ<0\ar\n><n\e‘#”“—’°>|n’><n’|af-\o>

nn’

One-body propagator in second quantization

6(1,1') = — 0| T( (1) (1))|0)

T is the time ordering operator and 1 =r;, t;

B Tw@u ) = w@efa) ifa>e,
—T(@W)p) ifa <ty




G(r,r'it — 1)

i L H(t— i — L H(t—
7g<r\e 7 H( t0)|r'>:7g(0|a,e 7 H(e to)a:r.\O)

i — LHe—
= =5 D larln)(nle” B0 (a3 o)

nn’

One-body propagator in second quantization

6(1,1') = —i{0| T (1) (1))|0)

T is the time ordering operator and 1 = rq, t;

Particle propagator t; > t
propag; 1 i/ Hole propagator t; < t;/

Gi(1, 1/) = ’.<0|1/)(1)¢f(1/)|0> Gi(1, 1/) — _,-<0‘¢T(1/),¢,(1)|0>

Gut feeling: it should be related to scattering...




n-body Green's function

Gn = (=) (O T{(1)... ()" ()" (1') }|0)

Green's functions are average value
of

creation and annihilation operators
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Hartree—Fock Random-Phase
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[ Field's operator ]

dynamical equation

Green's function
dynamical equation
link between
Gp—1, G, and Gn+1

Dyson equation )
and *»[ Optical Potential ]
Self energy

[ Hartree-Fock ] [ Hartree Fock &

Approximation Random-Phase
pp Approximation

You will find the demonstration at the end of presentation




Dynamical equation for Gy

Gi1(1,1) = Go(1,1") — i/d2d3G0(1,2)v(2,3)G2(23; 1/3™)

The dynamical equation for the one-body Green's function connects Gy, G; and Gp.

More generally, the same kind of relation relates Gy _1, Gy and Gy q.




[ Field's operator ]

dynamical equation

Green's function
dynamical equation
link between
Gp—1, G, and Gn+1

Dyson equation
and *»[ Optical Potential ]
Self energy

[ Hartree Fock &

Hartree—Fock Random-Phase
Approximation
Approximation




Dyson equation

Gi(1,1) = Go(l,l/)-f—/d2d3Go(1,2)Z(2,3) Gi(3,1)

Self-energy

Figure 2

i terms o

tion of the Dyson equation for the dressed SP propagator
e and the irreducible self-energy.




Dynamical equation for Gy

61(1,1') = Go(1,1') — i/d2d3G0(1,2)v(2,3)Gz(23; 134

Dyson equation

Gi(1,1') = Go(1,1')+/d2d3Gg(1,2) ¥(2,3) G1(3,1)
e

Self-energy

Self-energy

/d3):(2,3)G1(3, 1) = —i/d3v(2,3)G2(23, 1/3™)




Dynamical equation for Gy

61(1,1') = Go(1,1') — i/d2d3G0(1,2)v(2,3)Gz(23; 134

Dyson equation

Gi(1,1') = Go(1,1')+/d2d3Gg(l,2) ¥(2,3) G1(3,1)
e

Self-energy

Self-energy

/dl’d3z(2,3)cl(3, )67 (1, 4) = —i/dl'd3v(2,3)G2(23, 1'3%)671, 4)




Dynamical equation for Gy

Gi1(1,1") = Go(1,1") — i/d2d3Go(1,2)v(2,3)G2(23; 1/3T)

Dyson equation

Gi(1,1') = Go(1,1’)+/d2d360(1,2) ¥(2,3) G1(3,1))
N —

Self-energy

Self-energy
5(3,4)

e e—
/dl’d3£(2,3)61(3, )67 (1, 4) = —i/dl'd3v(2,3)G2(23, 13h) 61, 4)




Dynamical equation for Gy

61(1,1') = Go(1,1') — i/d2d3G0(1,2)v(2,3)Gz(23; 134

Dyson equation

Gi(1,1') = Go(1,1')+/d2d3Gg(1,2) ¥(2,3) G1(3,1)
e

Self-energy

Self-energy

$(2,3) = —i/d4d5v(2,4)G2(24, 541)6;1(5,3)




Self-energy

¥(2,3) = —i/d4d5v(2,4)62(24, 54%)6,71(5,3)

- Self-energy is exactly determined starting from a two-body interaction.

- G is connected to Gy and G3 and so on...




[ Field's operator ]

dynamical equation

Green's function
dynamical equation
link between
Gp—1, G, and Gn+1

Dyson equation
and *»[ Optical Potential ]
Self energy

[ Hartree Fock &

Hartree—Fock Random-Phase
Approximation
Approximation




Dyson equation

61(1,1) = G(1,1) - [ d2d36o(1, T2 HG1(3,1')




Dyson equation

61,1 = 60(1,1/)—/d2d350(1,2));(2,3)<;1(3, )

5} 1
<7 + —A) —Dyson equation

ot 2m

%) 1
( o 7A> Gi(x, x') = 8(x,x") — /dX"Z(X, X6 (x", x")
ot 2m




Dyson equation

61(1,1) = Go(1,1) — [ d2d36o(1,2)E(2,3)61(3,1)

2] 1
<i b fA) +—Dyson equation
ot  2m

9 1
(7 + —A) Gl x) = 80 x) = [ "B, x)G1 (6" x')
ot 2m

2] 1
FT[(— 4 —A) +— Dyson equation]
ot 2m

2
<a = ;—m) Gi(r,r';e) = 8(r,r') — /dr"Z(r, i e)Gi(r, ' €)




a 1
FT[(i e fA> — Dyson equation]
ot 2m

2
(5 - g—m) Gi(r,v';e) = &(r,r') — /dr"Z(r, v e)G(r,re)

Field's operators

One-body Green's function
Y )

ST ¢rnal ()
A
G1(x, x") = =0 T(w(x)w T (x'))]0)

P(x) PIENGENG)
X




a 1
FT[(i e fA> — Dyson equation]
ot 2m

2
(E — g—m) Gy(r,r';e) = 8(r,r') — /dr"Z(r, v e)G(r,re)

Field's operators

One-body Green's function
¥T0 = Y eAmal)
Gi(x, x") = D da(NSr (PG n/ (t — ) 2

AN P(x)

S oamax(t)
by




a 1
FT[(i e fA> — Dyson equation]
ot 2m

2
(E — g—m) Gyi(r, v e) =6(r,r) — /dr"Z(r, 7 e)Gi(r, v e)

Field's operators

FT(Gy)
O SENCENG!
Gi(r,rie) = 3 ¢y (F)Gynr () >
AN P(x) =

Do éaax(®)
X




a 1
FT[(— + —A) — Dyson equation]
ot 2m

2
(E - 5*) D a9 (MG () = 8(r,r)
VN

= /dr”):(r, i) D oaeNs (MG (e)

AN

Field's operators
FT(Gy)
Wiy = 3 eamal
Gy(r,r';e) = Z da(Nd3/ (F)Gy s (€) :
AN P(x)

> oaax(t)
A




2] 1
FT[(— 4L —A) +— Dyson equation]
ot  2m

2

(- £) S x5 1601000 = 0
UV

— /dr"):(r, i) > pa(dr (F)Gyar (e)

AN

9 1
S drdr’¢f\3(r)¢/\4(r’)FT [(a I EA) — Dyson equation]

2
A

1

+/dr¢f\3(r)/dr"):(r, )b, (r")} Capag(8) = dxgny




9 1
S drdr’¢f\3(r)¢/\4(r’)FT [(a I EA) — Dyson equation]

2
> {€5>\1>\3 ~ [ a3, 0203, 0)

A1

+ [ 93,00 [ T 00n, ()} Gayng €)= agg

Let's consider a set of wave functions ¢ that diagonalizes it

[e = Ex(e)] Gyas () = 51

hence

2
P " "
Gal =+ [ drE(rrie)lan) = Exg (Dagn

The set of wave functions ¢ obeys

2
Z o0+ [ dEr,ie)ox() = Ex(©)9a(0)




Schradinger equation

P
—éalre) + /dr'f(ry rie)ea(r, e) = E(e)oa(r, &)
2m




Schradinger equation

2
—éalre) + _/dr'f(ry rie)ea(r, e) = E(e)oa(r, &)
2m

— ¢'s are the wave functions of a particle experiencing a potential ¥ which is nonlocal and energy dependent




Schradinger equation

2
—éalre) + _/dr'f(ry rie)ea(r, e) = E(e)oa(r, &)
2m

— ¢'s are the wave functions of a particle experiencing a potential ¥ which is nonlocal and energy dependent

— Optical potential is connected to the Fourier transform of Self-energy itself connected to the two-body interaction.




Schradinger equation

2
—éalre) + _/dr'f(ry rie)ea(r, e) = E(e)oa(r, &)
2m

¢'s are the wave functions of a particle experiencing a potential £ which is nonlocal and energy dependent

Optical potential is connected to the Fourier transform of Self-energy itself connected to the two-body interaction.

At that level of the calculation there is no average on the energy

The calculation is formaly complete: direct, preequilibrium, CN ...




dynamical equation

[ Field's operator ]

Green's function
dynamical equation
link between
Gp—1, G, and Gn+1

Dyson equation
and *»[ Optical Potential ]
Self-energy

s

Hartree-Fock
Approximation

Random-Phase
Approximation

] [ Hartree-Fock &




Dynamical equation for Gy

Gi1(1,1) = Go(1,1") — i/d2d3G0(1,2)v(2,3)Gz(23, 1/3%)

Hartree-Fock approximation

o Two-body correlations are neglected

@ G, becomes an antisymmetrized
Gy = — product of Gp's

Dynamical equation for G; within HF approximation

GHF(1,1) = G(1,1) — i/d2d360(1,2)v(2,3) (G{’F(z, )61 (3,3%) — 6MF(2,3%)6]F (3, 1’))




Dynamical equation for Gy within HF approximation

G @17y = G117 — i/d2d360(1,2)v(2,3) (c{’F(z, )61 (3,3%) — 6MF(2,3%)6!F (3, 1’))

~
Hartree-Fock Diagrammatic
1/ 1/ 1 1/ 1/
1
1
1
= A+ 2 + 2 3
1 1 1
! A A
1 1 1
1 1! 1! !
Infinite sum of 'bubbles’ and 'oysters’
v




Exact Self-energy

(2,3) = —i/d4d5v(2,4)62(24, 547)G;1(5, 3)

Self-energy at the HF approximation

sHF(2,3) = —i/d4d5v(2,4) (G1(2,5)G1(4,4+) - G1(2,4+)Gl(4,5)) G1(5,3)




Exact Self-energy

(2,3) = —i/d4d5v(2,4)62(24, 547)G;1(5, 3)

Self-energy at the HF approximation

sHF(2,3) = —i/d4d5v(2,4) (61(2,5)G1(4,4+) - G1(2,4+)Gl(4,5)) G (5,3)




Exact Self-energy

(2,3) = —i/d4d5v(2,4)62(24, 547)G;1(5, 3)

Self-energy at the HF approximation

(2,3 = —i/d4v(2,4) (52,3614, 4) - Gi(2,47)5(4,3))




Exact Self-energy

(2,3) = —i/d4d5v(2,4)62(24, 547)G;1(5, 3)

Self-energy at the HF approximation

=1 (2,3) = —i/d4v(2,4)6(2,3)G1(4,4+) +iv(2,3)G1(2,3)




Exact Self-energy

$(2,3) = —i/d4d5v(2,4)G2(24, 54)6, (5, 3)

Self-energy at the HF approximation

=1 (2,3) = —i/d4v(2,4)6(2,3)61(4,4+) +iv(2,3)G1(2,3)

Schrédinger equation

2
Zoatne)+ [ar T ric) ox(re) = E@r(ne)
2m N

FT of Self-energy




Self-energy at the HF approximation

$HF(2,3) = —i/d4v(2,4)6(2,3)G1(4,4+) Fiv(2,3)61(2,3)

Occupation numbers
One-body Green's function ,
Gaa(t—t =40) = —i(1 — my)
’ * oy ’
Gi(x,x") = Az;\, PA(NS3/ (M) Gy s (t — 1) Gaa(t —t' = —0) =imy
my = WO\BI\B,\WO)

Fourier transform of £MF with v(x, x’) = v(r — r')5(t — t')
e = anr) [ arvnr) X maoi@)oa()
A

= v(r, r") Z m>\¢§(r)¢>\(r")
A

8(e,¢") [ dev(e, o) = vie e )ote,




Schrédinger equation

o’ HE (0 v o) —
oa(re) + [ AV ric)on(r ) = E)oa(r )
2m
HF potential

VR (o) = () / dr'v(r, ¥)p() — v(r,1")p(r, r")

NN interaction

P vH (p)

Schrédinger equation




Schrédinger equation

o’ HE (0 v o) —
oa(re) + [ AV ric)on(r ) = E)oa(r )
2m
HF potential

VR (o) = () / dr'v(r, ¥)p() — v(r,1")p(r, r")

NN interaction

P vH (p)

Schrédinger equation

If the 2-body interaction is finite range, the HF potential is nonlocal




HF potential shape

1500 1
Total — ) Total —
000 Range 1 o /Y Rangei
Range2 —— 06 i | Range2 —.—
20 Dersity [
~ o [
e i i
S 02 i \
g J \
: ) .
> oz
o4
o6 (b)

3 4 &
r (im)

1=0-> 8 —
12915 -

Jy (MeV fm®)
vE (Mevim®)

150

o s 0 s 2 25 ®
PW

Fig. 15. Contributions for n + °Ca to: (a) to the Hartree local
potential (V): Total (solid line), first range of D1S (dashed
line), second range of D18 (dash-dotted line) and density term
(dotted line). (b) First partial wave of the nonlocal Fock term
atr =’ = 4.3 fm: Total (solid line), first range of D1S (dashed
line) and second range of D1S (dash-dotted line). (c) Volume
integral of the Fock potential as a function of partial wave: Neg-
ative slope (solid line). positive slope (dashed line). (d) Same as




Scattering off a mean-field potential




Scattering off a mean-field potential

Numerical resolution
of the scattering equation
with Vyr




Scattering off a mean-field potential

Numerical resolution
of the scattering equation
with Vyr

‘ — Matching
1 ikR

[T+V —EW(RO) =0 i YIS (R 9) = ek +_/'(H)eT
\VARVAR:

:Q ¢ a>R,

R, : some large R where V(R)=0 (potential dependent)




Scattering off a mean-field potential

Numerical resolution
of the scattering equation
with Vyr

‘ — Matching
1 ikR

[T+V —EW(RO) =0 i YIS (R 9) = ek +_/'(H)eT
\VARVAR:

:Q ¢ a>R,

R, : some large R where V(R)=0 (potential dependent)

— Phaseshift ¢




HF phaseshift n/p+4°Ca

5/2

5/2 T T

40Ca(p,p) Phaseshift

4%Ca(n,n) Phaseshift

@
o

5 (rad/m)

©

- 8
T

5 (rad/m)

12

12

1 10 100 1000 1 10 100 1000

E (MeV)
@ Single particle resonances when § = nm/2 (n impair).

@ Levinson theorem and total cross section




Total cross section

s L

0
E (McV)

sao

8

G, (mb)
g

o

tom

— Re(CHE)]

E (McV)

Bound states HF/D1S  Exp.

Y
2

ROy &

13

CHEN

“Ca

» VHF gives the main contribution to the real part of the potential

(B. Morillon and P. Romain, Phys. Rev. C 70, 014601 (2004).) — dispersive potential

(A. J. Koning and J. P. Delaroche, Nuclear Physics A 713, 231 (2003).)



HF differential cross section

n+%Ca @ 303 Mev

do/dQ (mbisr)

do/dQ (mblsr)

n+%a @40 Mev




HF differential cross section

do/dQ (mbisr)

n+%Ca @ 303 Mev

n+%a @40 Mev

O
I
.
] .
.
5 wf o0, ]
4 El .
g *eeq
] g %
£ L had b
LIy}
* i T
P O S E U S
6., (deg)

— Cross section is overpredicted

— Lack of absorption

— Need to account for more inelastic processes
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Exact Self-energy

(2,3) = —i/d4d5v(2,4)62(24, 547)G;1(5, 3)




Exact Self-energy

(2,3) = —i/d4d5v(2,4)62(24, 547)G;1(5, 3)

Let’s go directly to the result...




Self-energy at the HF+-RPA approximation

T1(1,1) = Epr 1)+ Tpp(1, 1) + Epp(1,1) — 25P(1, 1)
T, 1) = v, )6, ) - i5(1,1’)/d2v(1,2)G1”F(2;2+)
Tp(1,1) = /d3d4v(1,3)G1HF(4,3)G2(13; 1'4)v(4,1")

g = HF ’ Latgt

To1,1) = 7/d3d4v(1,3) [6F (1,1)Gy(34: 3" 4")

—GIF(1,4)6,(43;13%) — 67 (3,1')Gy(41; 47 3)
- 6" (3,96,(141'3)| v(a,1)

Camd e G2




Schrédinger equation
p? HF
Zgatne)+ [V rie)on(r, o) = EE)oa(r )
HF potential
HF ” " , , . ” "
VI (e i e) = 3o e") [ drvep() = v ot )

RPA potential

im 57 SR

n—=0F n o iin

VRPA( | E)

n 1—n
x A + A
E—ex+Ey—in E—eyx —Ey+in
P NGNS

with

Fin®0 = [ @6} (vl i = Ploa(s;(n)




Mean Field

Target's excitations

Y 2







Complex RPA potential

Vrpa(r,v' E) = lim ZZ/X( )X%V)

=0T 20k

nx 1—nm o
x + N OLNG
(E—e)\+EN—i17 E—e)\—EN+i17> A (0l ()

. ) b f(x) _ b f(x) i
Plemelj formula nl’?ﬁ 1P sk e = 2 [ {550 dx £ imf(x0)

(1 — (ijkl, N) _ (ijkl,N)
im / (1 —ny)f (é_x)de)\ _ gm/ A)f (éx)d
ex — (E—Ey) —in 6>\7(E7En)

@=nyim [ {0 (e)6(en — (E -~ En))den

€X
n—0t

@ When nn — 0, only Ejy < E excitations contribute to the imaginary part of the RPA potential.
@ When 1 — 0, no contribution from the compound nucleus terms to the absorption (37 ).

@ The determination of the real part requires all the excitations.




Effect of HF intermediate propagator

° P+40 Ca Intermediate HF propagator
@ Vyr + Im(Vgpa)
@ Coupling to the first 17 E;_ = 9.7MeV

0061

oos|- RP,
~ HF exdiaton
B owl
b‘*“‘"“ 52 - T
0 ) 40Ga(p,p) Phaseshift
oo
32
o 5 i4 16 18 ®
E . (MeV) ]
°
@ Effect of resonances of the intermediate HF propagator.
12
@ Enhancement of og compared as with a Coulomb wave.
. e
1 10 100 1000
E (MeV)
(1 — ny (kLN (¢ "
lim /Im(w)dek - - nA)w/f(UkI’N)(ek)é(eA — (E — En))dey
n—0 ex —(E—Ep)—in




Effect of HF intermediate propagator

@ oR from Vyr + Im(Vgpa) @ Zero width calculation:

® og from Ve + Im(Vpy) @ o = 0 for incident energies below the energy of

the first excited state of the target nucleus

@ “0Ca RPA states J = 0 — 8

1500

g 1000 wl- RPAstates J=0to 14 i
& 4;; 40Ca
z
500 o
E
| ol 4
iy :
L L L | Z
E— i
— Effect of the HF resonances . " S
on Im( VRPA) By MeV)
—(1 — )R ey — (1 = ny)fN ey
lim ——————————de) = =4 / ————————"—dey,
n—0t ex —(E—Ep) —in ey — (E— Ep)

- @=-nyin / (kL) (e )o(e — (E — En))dey




Effect of HF intermediate propagator

o
R from Vi + Tm(AViea) @ Physical origin of width

@ Self-consistent scheme

@ 7 # 0 when HF propagator gets dressed by RPA
e Ey — En + ilTn(En)
1500 Damping (doorway state) & continuum
=
E : ‘
o A
5 \ y 7 Phenomenological width for RPA states
‘\' M Al M \\w M"Wy ,\‘ M \W i Wl ]
00 \f‘ 1 ‘\ ‘ ‘ ‘ B
i =
' 'H J ‘ \ ' "
il = af ]
M | ’ | -
10
E (MEV) 0 ~
m , . | 1
@ In this work e w

@ Consistent scheme
(Gogny interaction only)
@ Use of a phenomenological width

(Harakeh and van der Woude)




Dispersion relation

Causality — relation between real and imaginary parts

V(E) = VR(E)+ iVi(E);
VR(E) = Vur+ AVR(E),
AVR(E) = %/M Il_/l’(f/z:dE/.

V(r) Centrifugal
_~Potential

energy

Scattering
States

Resonance -"—"r\
0

wnnuuo)

r
Bound
States

Bound states are taken into account in the determination of the potential




e Phenomenology
@ Local potentials
@ Nonlocal potentials
@ Calibration & UQ




Phenomenological optical potentials

——
Microscopic Experimental
Information

| ications/ Integral Experiments
Civaux reactor refucling
] ©la médiathique EDF Claude Pauquet

Evaluated Data Processed Data
Library Application Library

Theoretical Models

Engineering Code
Modeling of LWR neutron flux

Theoretical Investigations with the Cronos code @CEA

Figure 1.1 — Schematic of the nuclear data path from experimental and/or theoretical

sources to industrial applications.

Picture from Tamagno

Precision required for the evaluations

Constrained by numerous calculations using reaction codes: TALYS, EMPIRE
- Predictivity outside the range parametrization?
- Parametrization of non local dispersive potentials

- Issues induced by localisation procedures : effet Perey, dépendance spurieuse en énergie




Things we learn from microscopy

We have shown that optical potential is
Nonlocal V/(r, r/)

Complex V = U + iW

Absorptif W < 0

- Energy-dependent V(r,r’, E)

- Dispersive

V(E) = Ve + A& V(E),

P [t+oo W(E') ,
A V(E) = 7/ dE’,
mJ—co E' — E

where P denotes the principal value of the integral.




e Phenomenology
@ Local potentials




Origin of nonlocality

o Antisymmetrization

Vir(r ) = / drsp(r)v(r,m) — p(r, ) (r,¥")




Origin of nonlocality

o Antisymmetrization

Vir(r ) = / drsp(r)v(r,m) — p(r, ) (r,¥")

o Polarization (Second order diagrams)
Surface term...

AU(I’, r/; E) Z VOI u r r; E)V,o(r)

where Gj; is a propagator

du(r)

Vio(r) = Bir o

Y,

transition potential in the Bohr collective model.

A. Lev, W. P. Beres, and M. Divadeenam. PRC 9 :2416-2434, Jun 1974.




Woods-Saxon potential

V(r) = _[VO + iWI]fvol(r) - iWDfsurF(r) - (Uso + "Wso)fsurf(r)e o

1
1+ er—Ro)/a

Volume

fvol(r) ~
0.5
Surface 4 er—Ro)/a
Fout (1) ™ [T 4 et—ror/a]2
2 4 6 8 7 [fm]




Simplified scattering equation

Integro-differential equation,

n '
5800+ [ Vialrr)u(e)ar = Ev(r),
with 1 the reduced mass. A local potential reads,
Ve (r,v’) = Vi(r)é(r,r").
and the equation is differential,
h2
—ﬂMz(r) + Vi(r)y(r) = Ey(r).

— Modernisation of the numerical tools




Koning-Delaroche potential
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Koning-Delaroche potential
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Fig. 17. Comparison of predicted differential cross sections and experimental data, for neutrons scattered from
90Zr and 92 Zr. For more details, see Section 4.1.




Morillon-Romain potential

Local dispersive potential

PHYSICAL REVIEW C 70. 014601 (2004)

Dispersive and global spherical optical model with a local energy approximation
for the scattering of neutrons by nuclei from 1 keV to 200 MeV

B. Morillon and P. Romain
Commissariai a I'Energie Atemique, DAM/DIF/DPTA/SPN, Beite Pestale 12, 91680 Bruyéres-le-Chdrel, France
(Received 8 March 2004: published 6 July 2004)

We present a global spherical optical model potential for neutrons with incident energies from 1 keV up to
200 MeV containing dispersive terms and a local energy approximation. A comprehensive database for spheri-
cal or quasispherical nuclei covering the mass range 24 09 is used to automatically search on all
parameters. A good representation of the entire data set is obtained when both volume and surface potentials
share the same energy-independent geometry.

DOI: 10.1103/PhysRevC.70.014601 PACS number(s): 24.10.Ht




Morillon-Romain potential

In the dispersion_ relations treatment [6], the real V and
imaginary W volume potentials are connected by a disper-
sion relation

V(E) = Vir(E) + AV(E),
Local dispersive potential .
P [™ W(E")
AV(E)=— ———dE'". (2)
w) . E'-E

As usual, P denotes the principal value of the integral and
Vue(E) the Hartree-Fock contribution to the mean field.
B. Real potentials

A realistic parametrization of the Hartree-Fock potential
was postulated by Perey and Buck [7]. In their work, the
nonlocality of Vie(r.r’) has a Gaussian form

Vyp(r,r’) = V(r)exp(- [r - r'|78%),

where S is the nonlocality range. The local energy approxi-
mation then yields [7]

Vip(E) = Viggexp(= pfB1E - Vup(E)1287), (6)
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@ Nonlocal potentials




Perey-Buck Nonlocal Potential

[2E | udear Physics 32 (1962) 353—380; (© North-Holland Publishing Co., Amsterdam

Not to be reproduced by photoprint or microfilm without written permission from the publisher

-LOCAL POTENTIAL MODEL FOR THE SCATTERING OF
NEUTRONS BY NUCLEI

F. PEREY and B. BUCK
Oak Ridge National Laboratory t Oak Ridge, Tennessee

Received 25 September 1961

Abstract: An energy independent non-local optical potential for the elastic scattering of neutrons
from nuclei is proposed and the wave-equation solved numerically in its full integro-differ-
ential form. The non-local kernel is assumed separable into a potential form factor times
a Gaussian non-locality. The potential form factor, of argument §(r+x’), is that of a real
Saxon form plus an imaginary term having the shape of the derivative of a Saxon form.
A real local spin-orbit potential of the usual Thomas form is included. The parameters of the
potential obtained solely from the fitting of the differential cross sections for lead at 7 MeV
and 14.5 'MeV are used unchanged to calculate the elastic differential cross scctions,
total and reaction cross sections and polarizations on some elements ranging from Al to Pb
at various energies from 0.4 MeV to 24 MeV. The S-wave strength functions and the effective
scattering radius R’ are also calculated with the same parameters. The parameters in the
usual notations are: real potential ¥V = 71 MeV, r = 1.22 fm, @ = 0.65 fm; surface imaginary
potential W = 15 McV, @ = 0.47 fm; non-locality 8 — 0.85 fm; spin-orbit potential, using
the nucleon mass in the Thomas form, Uy, = 1300 MeV. The energy independence of the




Mahzoon Nonlocal Potential

week ending

PRL 112, 162503 (2014) PHYSICAL REVIEW LETTERS 25 APRIL 2014

Forging the Link between Nuclear Reactions and Nuclear Structure

M. H. Mahzoon,' R.J. Charity,” W. H. Dickhoff," H. Dussan,' and S.J. Waldecker®
'Department of Phy, Washington University, Saint Louis, Missouri 63130, USA
2Department of Chemistry, Washington University, Saint Louis, Missouri 63130, USA
3Department of Physics, University of Tennessee, Chattanooga, Tennessee 37403, USA
(Recewed 18 December 2013; published 25 April 2014)

A comprehensive description of all single-particle i i with the nucleus *Ca is
generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all
relevant data above and below the Fermi energy. The introduction of nonlocality in the absorptive potentials
yields equivalent elastic differential ¢ ompared to local versions but changes the absorption
profile as a function of angular i for the analysis of nuclear
reactions. Below the Fermi energy, nonlocality is ssssnual to allow for an accurate representation of particle
number and the nuclear charge density. Spectral properties implied by (e, ¢’'p) and (p, 2p) reactions are
correctly incorporated, including the energy distribution of about 10% high-momentum nucleons,
as experimentally determined by data from Jefferson Lab. These high-momentum nucleons provide
a substantial contribution to the energy of the ground state, indicating a residual attractive contribution
from higher-body interactions for “’Ca of about 0.64 MeV/A.

sections

o Cutting edge phenomenological potential: nonlocal, dispersive...

@ Both reaction and structure observables accounted for in the calibration




New constraints: the density obtained from the one-body Green'’s functi

One can get the one-body density matrix

€F
ng(r,r') = %/ dE ImGj(r,r'; E)

then charge density reads

e .
P == 2/:(21 + 1)ny(r,r)
iy
0.1 T T T

r [fm]

nental charge density (28] (thick red hashed line) with

Figure from Mahzoon




DOM provides everything constently

Ty = 100 MoV

Nikhel o ] Ty = 100 MV
DOM

ikl o
DOM —|
00k

1/2*]

) Z=071£0.06
(a)

Z=0.60+003
(b)
R e T ]

P eV ]

F T T S T R T RT]
P [MeV/c]

Figure 6. “’Ca(e, ¢/p)*’K spectral functions in parallel kinematics, at an outgoing
proton kinetic energy of 100 MeV. The solid line is the calculation using the DOM
ingredients, while the points are from the experiment detailed in [179]. (a) Distribution
for the removal of the 0d 2. The curve contains the DWIA for the 3/2* ground state
including a spectroscopic factor of 0.71. (b) Distribution for the removal of the
151 proton with a spectroscopic factor of 0.60 for the 1/2* excited state at 2.522 MeV..
The figure is adapted from figure 5 of [170]. Reprinted with permission from [170],

Copyright (2018) by the American Physical Society.
Figure from M.C. Atckinson

- Fit:

particle numbers, charge densities, and g.s. energies are included

- Consistent DWIA analysis in that the bound state wave function, spectroscopic factors and outgoing proton distorted wave
are provided by the same DOM.
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@ Calibration & UQ




Uncertitude quantification

PHYSICAL REVIEW C 107, 014602 (2023)

Uncertainty-quantified phenomenological optical potentials for single-nucleon scattering

C.D. Pruitt®,” J. E. Escher®, and R. Rahman
Lawrence Livermore National Laboratory, Livermore, California 94550, USA

®  (Received 15 July 2022; accepted 29 November 2022; published 3 January 2023)

Optical-model potentials (OMPs) continue to play a key role in nuclear reaction calculations. However,

the uncertainty of pt logical OMPs in wid se—inherent to any parametric model trained
on data—has not been fully characterized, and its impact on downstream users of OMPs remains unclear.
Here we assign well-calibrated inties for two rep ive global OMPs, those of Koning-Delaroche

and Chapel Hill *89, using Markov-chain Monte Carlo for parameter inference. By comparing the canonical
versions of these OMPs against the experimental data originally used to constrain them, we show how a lack
of outlier rejection and a systematic underestimation of experimental uncertainties contributes to bias of, and

ds in, best-fit values. Our updated, uncertainty-quantified versions of these OMPs addre<<
these issues and yield complete covariance information for potential Scattering p




Uncertitude quantification
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e Microscopy
@ ab-initio
@ g-matrix
@ Jeukenne-Lejeune-Mahaux
@ EDF-based potentials




Microscopic approaches

Here we consider approaches starting from 2-body interaction. Many-body methods
are then used to contruct the n-A interaction

1 MeV 50 MeV 1GeV
RPA i )
Potential g-matrix Potential
M
Potential
340 Me Ab-initio
Potential

Optical potential depends on particle-hole & particle-particle correlations
- RPA potential accounts for particle-hole correlations (approximation valid below 40 MeV)
- g-matrix accounts for particle-particle correlations (approximation valid above 40 MeV)

- FRPA deals with both on the same footing




e Microscopy
@ ab-initio




Ab-initio potential

Criteria:
@ Based on bare NN interaction

@ Consistency




Faddeev Random-Phase Approximation potential

Account for ph & pp correlations on the same footings

— See Vittorio's talk

10! T T T T
00—
Diagram expansion for FRPA, %0
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FIG. 4. Total elastic cetion for neutro
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dashed, and s

. t0 retaining
raions and 0 th comple

A. Idini, C. Barbieri, P. Navratil PRL 123, 092501
Self-energy obtained on harmonic oscillator basis then transformed in momentum




Faddeev Random-Phase Approximation potential

Account for ph & pp correlations on the same footings

— See Vittorio's talk
10 T T T T T T

100
1071

10

Diagram expansion for FRPA,
10! &\!)/i’ N ;7' 1

0200 4060 80 100 120 10 160 180

with the (2p-1h) propagator 0 (deg)
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do/dQ) (bfsr)
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FIG. 4. Total elastic cetion for neutro
on 10 form SCGF AL
compared 1o the exp
a n. and s

raions and 0 the

A. Idini, C. Barbieri, P. Navratil PRL 123, 092501
Self-energy obtained on harmonic oscillator basis then transformed in momentum
Lack of absorption. Need for higher-order calculations (3p-2h...)




Average in energy vs. Width(s)

- Averaging energy from Self-energy to optical potential
- Width to mimic continuum (escape width)

- Width to mimic higher orders (damping width)




Toward Gorkov-SCGF potential

PHYSICAL REVIEW C 89, 024323 (2014)

Ab initio self-consistent Gorkov-Green’s function calculations of semi-magic nuclei
Numerical implementation at second order with a two-nucleon interaction

[EN

V. Soma, " C. Barbieri," and T. Duguet"*
Vnstitut fir Kernphysik, Technische Universitct Darmstads, 64289 Darmistadt, Germany

2ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fiir Schwerionenforschung GribH, 64291 Dammadz Germany

“Depariment of Physics, University of Surrey. Guildford GU2 7XH. United Kingdor

4CEA-Saclay, IRFUIService de Physique Nuciéaire, 91191 Gif-sur-Yvette, ['mme
$National Superconducting Cyclotron Laboraiory and Department of Physics and Asironomy. Michigan State University.

East Lansing, Michigan 48524, USA
(Received 15 November 2013 published 28 February 2014)




Coupled cluster potential

Inversion of propagators using ab-initio wave functions

Dyson equation

Gi(1,1') = (;0(1,1’)+/d2d3co(1,2) ¥(2,3) G1(3,1)
—
Self-energy

Rotureau, Danielewicz, Hagen, Jansen, Nunes arxiv: 1808.04535 and PRC 95, 024315 (2017)




Harmonic oscillators and coordinate space

Picture from J. Dobaczewski https://www.fuw.edu.pl/ dobaczew/thodri30w/node4.html




Harmonic oscillators and coordinate space

Picture from J. Dobaczewski https://www.fuw.edu.pl/ dobaczew/thodri30w/node4.html

10° L

F o p(r) 1

—~ 10°f ]

£ : y ]

< 1070 p(r) SN 3
C (Nsh=12)A.‘~‘~\ % chipg

1072 - AN\ HFB—Y

(== \ ]

10.23'....|. ...l..(.N."i'=.2.0.).| .‘\..\‘.l i AL

0 5 10 15 20 25 30

r (fm)
~ A ]I\R
[T+V —EW(RH =0 YSYMN(R, ) =K 4 (0 )=

R, : some large R where V(R) =0 (potential dependent)



e Microscopy

@ g-matrix




g-matrix calculation

Bare NN — N + A connection

g
(dQ)NN Gnw )
NN — 11 = — Uopt (k' ki E) = 92
—_————
5.(E) Ny T |Vgs) 7
— —
2-Body Effective interaction N+A

UK, k; E):/dpdp' p(p'.p) (K'p'|G(E,p) kp)

(p) Vin

~Y dalp)bk

Use of LDA approximation




Santiago g-Matrice 40 MeV < E <1 GeV

Une matrice-g fournie par Santiago avec le code

ALBATROS/BHF

Matrice-g
Santiago
Non-locale

NEPTUNO

STRUCTURE
HF(B).(Q)RPA,
MPMH
Densité,
densités de
transition

SIDES
NUCLEON
SWANLOP

ECANOL

Observables
élastiques

& inélastiques

- Collaboration avec H. F. Arellano
- Maitrisée
- Nonlocalité conservée

- Fonctionne au-dessus de 40 MeV




Matrice-g de Santiago 40 MeV < E <1 GeV

. N
N Q
FY | S P A I IV I P IS I I
200 400 600 800 1000

Projectile Energy [MeV]

FIG. 3: Total cross section for neutron elastic scattering from 2*Ph, ¥Zr, *°Ca and %0 as

functions of the projectile energy. The data [30] are represented with open circles. The solid

and dashed curves represent full-folding results using the g- and {-matrix respectively. The curves

corresponding to the full NNOMP are marked with a triangular label at their right end, whereas

those results with the imaginary part of the NNOMP suppressed are immarked.
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@ Jeukenne-Lejeune-Mahaux




JLM-B 1 MeV < E < 340 MeV

A g-matrix corrected to fit low energy region

Vi
'\ (Reid) !
Rt Principle:
777777777 vy - Jeukenne-Leujeune-Mahaux then Bauge then Dupuis
h BHF 1 - BHF + ad-hoc parameters

””””” - 2-effective interaction on Yukawas

- Local interaction

'
i
STRUCTURE Y . .
- Only direct terms are considered

HF(B),(Q)RPA,
MPMH

Densité, Resulting potential is local
densités de

transition

- Allow for a consistent determination of both optical and

transition potentials (inelastic scattering).
On going work:

- Add spin-orbit and tensor contributions

Available in Talys




~

Spnericz

2

€1 (B-T- (il

J.-P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 16, 80, (1977)

JLM approach : semi-microscopic (phenomenology).
Brueckner-Hartree-Fock, Reid's hard core

~ Improved LDA : V (pis, prv, E)
— Four E-dependent parameters : IS/IV components of
Re/Im parts.

- Fitted to reproduce elastic and charge exchange (Lane
consistent).

— Input : neutron and proton nuclear density profiles.

Global interaction (Bauge et al. 2001) : HFB densities,
— E=1keV —200 MeV, recently 200 - 340 MeV.
— A >~ 30 (limit of LDA)

Brueckner calculations : contains exchange.
Only direct part (local) kept for potential in finite nuclei.

Slide from M. Dupuis

| optical potentials

1011

1010

o)) [wo) = 0

JLM/QRPA |
--=- KD ]
208pp(n,n)

7.MeV 2

0 A
0 30 60 90 120 150 180

0c.m.(deg)




Whitehead-Lim-Hot (WLH) global optical potential
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@ EDF-based potentials




Potentiel Gogny-RPA  E < 40 MeV

A microscopic potential for low incident energies based on effective interaction:

Skyrme, Gogny

STRUCTURE
HF(B),(Q)RPA,

MPMH Interaction
Gogny

Densité,
densités de
transition

SIDES
NUCLEON
SWANLOP

ECANOL

|

Observables

- Developped by N. Vinh Mau and A. Bouyssy
- E < 40 MeV




NN interaction

’ N \.A
VP (p) + AV(p)

NS

Schrodinger equation

SCRPA




Potential based on effective interaction

@ Nuclear Structure Method developed by N. Vinh Mau

@ Recent interest (Orsay, Hanoi, Japan, Milano, China, Bruyéres, Russia)




Mean-Field and beyond
from [ Optical Potential ]
effective NN interaction

Goals
Build an optical potential from an effective NN interaction
Consistent use of the effective NN interaction

Self-consistency

Tools
Green’s functions formalism

Gogny D1S phenomenological effective interaction




Effective NN interaction: Pros and cons

. N\
Pros
@ Phenomenological account of short range correlations
@ Simple shape
@ Energy independent
@ Extended reach of EDF approaches
\ J
Cons

@ Simple shape
@ Validity out of the parametrization range

@ Loss of the contact with more fundamental theories




Skyrme and Gogny interactions

Gogny interaction

Skyrme interaction Zero-range interaction
Finite-range interaction

(Brink and Boeker)




Extended reach of EDF approaches

Spherical Hartree-Fock (~30 nuclei)

o
' 10 20 % 40 % 6 70 8 90 100 110 120 13 140 150 180 170 180 160 200 210 220 230 240 250 260 270 280 200

Calculations with Gogny D1S interaction (S. Hilaire and J.P. Ebran)




Extended reach of EDF approaches

Spherical Hartree-Fock-Bogoliubov (~300 nuclei)

o
' 10 20 % 40 % 6 70 8 90 100 110 120 13 140 150 180 170 180 190 200 210 220 230 240 250 260 270 280 200

Calculations with Gogny D1S interaction (S. Hilaire and J.P. Ebran)




Extended reach of EDF approaches

Axially-deformed Hartree-Fock-Bogoliubov (~6000 nuclei)

o
' 10 20 0 40 50 60 70 & 90 100 110 120 130 140 150 160 70 180 190 200 210 220 230 240 250 260 270 280 290
N

Calculations with Gogny D1S interaction (S. Hilaire and J.P. Ebran)




Experimental
Cross sections

Microscopic Phenomenological
optical potential optical potential
Experimental
Structure
spectroscopy

Effective interaction




Nuclear Structure Method (NSM)

V = VHFE 4 AVRPA

Mean Field
tes v Target's excitations
. ~~~~~~ -
° v x\__.»__,i - 7
® ‘ — @
R v v
e v g : -

(N. Vinh Mau, Theory of nuclear structure (IAEA, Vienna) p. 931 (1970),
G. Blanchon, M. Dupuis, H.F. Arellano et N. Vinh Mau, PRC 91, 014612 (2015))




Nuclear Structure Method

Optical potential
VHE L /PP L yRPA _ 51/(2)

Bare &
Interaction




Nuclear Structure Method

Optical potential

V = VHF L yPP L yRPA _5y(2)
N
\
Bare . ]' * ph> =2
Interaction / M/
_’_/
Effective

Interaction +iml 1+




Nuclear Structure Method

Optical potential

V = VHF L yPP L yRPA _5y(2)
N
\\ s
Bare . | * ph> =2
Interaction / M/
_’_/
Gogny
Interaction

+ Im[ 1 +




Self-consistency

NN interaction NN_Irltgr_aC_tLon

’, \.A
P VI (p) p VI (p) + AV(p)
Schrédinger equation Schrodinger equation

SCHF SCRPA




Elastic scattering n/p + 4°Ca

Experimental
Cross sections

N

Microscopic Phenomenological
potential potential
( ) ( Experimental
Structure P
spectroscopy
Effective interaction




Schradinger equation

pz
——palre) + / dr VI (e, 1 )on(r, €) = E(€)oa(r, €)
2m

HF potential

VHF(r, rie) = 6(r, ") / dr'v(r, r)p(r') — v(r, " )p(r,r")

NN interaction

P VHE(p)

Schrédinger equation




ph-RPA potential

AVipa = Im [v@] + VRPA _ oy

RPA, 1 _ . (M) (N)
VP e =i ST
N0, ijkN

% nx n 1—ny Fix(VFEs (F)
i r r
E—ex+Ey— iT(Ey)  E—ex — Ey+iT(Ey) ) TAVTHA

with
Fin 0 = [ @6} (vl )l = Ploa(s;(n)

@ ¢ are HF wave functions.

@ Bound as well as continuum states are taken into account
for the intermediate state ¢ .

@ Target excitations are obtained from the spherical
RPA/D1S code.

Blaizot, et al., NPA 265, 315 (1976).
Berger, et al., Comp. Phys. Com. 63, 365 (1991).




NSM
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cm.

FIG. 1: Differential cross sections for neutron (a) and proton
(b) scattering from *°Ca. Comparison between data (sym-
bols), V¥ + AV results (solid curves) and Koning-Delaroche
potential results (dashed curves).
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FIG. 2: Same as Fig. [1] for analyzing powers.




e Bridges between microscopy and phenomenology
@ Perey-Buck nonlocal model

@ Bell-shape nonlocality: microscopically




Optical potential

The optical potential as a possible connection between different levels of phenomenology

@ Phenomenological optical potential
@ Potentials based on phenomenological effective NN interaction (Gogny, Skyrme...)

@ Ab-initio potentials based on phenomenological bare NN interaction




Optical potential

The optical potential as a possible connection between different levels of phenomenology

@ Phenomenological optical potential
@ Potentials based on phenomenological effective NN interaction (Gogny, Skyrme...)

@ Ab-initio potentials based on phenomenological bare NN interaction

Possibility of fruitful exchanges between those communities




Probes and targets

Beam Target (Lab)
200 MeV
@ —>
n
p A /
327 (92)

(quite common until the 90s)

Proton number

Target (Lab) Beam

—
A x 200 MeV
A

RIB: Rare-Isotope Beam (inverse kinematics) EPJA 56, 47 (2020)

Neutron number




o Motivations for studying optical potential:
- Key element for evaluations
- Interpretation of experiments
- Interesting by itself




o Motivations for studying optical potential:
- Key element for evaluations
- Interpretation of experiments
- Interesting by itself

o Different strategies:
- Microscopy: build the potential from NN interaction and many-body theory
- Phenomenology: postulate a shape of potential and calibrate on experiment
- Dialogue microscopy/phenomenology




Origin of nonlocality

o Antisymmetrization

Vie(r,r’) = /drlp(rl)v(r, r1) — p(r,r)v(r,r’)




Origin of nonlocality

o Antisymmetrization

Vur(r,r') = /drlp(rl)v(r, r1) — p(r,r)v(r,r")

@ Polarization
Surface term...

AU(r,v; E) = Z Voi(r) Gii(r, v'; E) Vio(r'),

where G;ji is a propagator

dU(r)
dr

Vio(r) = Bir Y{(m),

transition potential in the Bohr collective model.

A. Lev, W. P. Beres, and M. Divadeenam. PRC 9 :2416-2434, Jun 1974.




Woods and Saxon (phenomenological)

V(r) = —[Vo + iWo]foor(r) — iWpfsurf(r) — (Uso + iWso)foure(r) £ - &

1
1+ el Ro)/a

Volume f I(r) ~
Vo

05 4 olr—R0)/a

Surface foure (1) ~ [1 + elr—FRo)/a]2

2 4 6 8 r [ fm ]




Locality / Nonlocality

Integro-différential scattering equation,

w '
5800+ [ Vialrr)u(e)ar = Ev(r),
When potential is local
Ve (r,v’) = Vi(r)é(r,r").
Scattering equation reduces to differential,
h2
—ZMz(r) + Vi(r)y(r) = E¥(r).

— Need for numerical tools
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@ Perey-Buck nonlocal model
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N-LOCAL POTENTIAL MODEL FOR THE SCATTERING OF
NEUTRONS BY NUCLEI

F. PEREY and B. BUCK
Oak Ridge National Labovatory t Oak Ridge, Tennessee

Received 25 September 1061

Abstract: An energy independent non-local optical potential for the elastic scattering of neutrons
from nuclei is proposed and the wave-cquation solved numerically in its full integro-differ-
ential form. The non-local kernel is assumed separable into a potential form factor times
a Gaussian non-locality. The potential form factor, of argument }(r-+1), is that of a real
Saxon form plus an imaginary term having the shape of the derivative of a Saxon form.
A real local spin-orbit potential of the usual Thomas form is included. The parameters of the
potential obtained solely from the fitting of the differential cross sections for lead at 7 MeV
and 14.5 {MeV are used unchanged to calculate the elastic differential cross sections,
total and reaction cross sections and polarizations on some elements ranging from Al to Pb
at various energies from 0.4 MeV to 24 MeV. The S-wave strength functions and the effective
scattering radius R’ are also calculated with the same parameters. The parameters in the
usual notations are: real potential V = 71 MeV, r = 1.22 fm, a = 0.65 fm; surface imaginary
potential W = 15 MeV, @ = 0.47 fm; non-locality f = 0.85 fm; spin-orbit potential, using
the nucleon mass in the Thomas form, Uy, = 1300 MeV. The energy independence of the
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Perey-Buck’s assumptions:
- Separability
- Gaussian nonlocality
- Low incident energy E < 24 MeV
- Energy-independent

- Local spin-orbit




Perey-Buck’s assumptions:
- Separability
- Gaussian nonlocality
- Low incident energy E < 24 MeV
- Energy-independent

- Local spin-orbit

— Shape used in most of nowadays phenomenology




Perey-Buck’s assumptions:
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- Low incident energy E < 24 MeV
- Energy-independent

- Local spin-orbit

— Shape used in most of nowadays phenomenology

— Is it validated by microscopy? (at least by a given microscopic model)




e Bridges between microscopy and phenomenology

@ Bell-shape nonlocality: microscopically




Representations

(post|U|prior)

R— %(,’ +r) g=k' —k  momentum transfer

1
‘nonlocality’ s=r" —r K = E(k’ + k)

s, R, R-3 K, q, K-§




Microscopic optical model

Bare NN — N + A connection

do |)
(dQ)NN Gnw .
NN — " = vy < — Uope (K, k; E) — { %
d.(E) tn T Vs 7
—_——
2-Body Effective interaction N+A

UK, k; E):/dpdp' p(p".p) (K'p'|G(E,p)kp)

~3 da(p )bl (p) Viuw




Check that microscopy works...

p+%%Ca
1010

11.42 (E8)

- Tian-Pang-Ma
- N3LO / Density from Gogny HFB
- AV18 / Density from Gogny HFB

do/dQ [ mb/sr]




Weak angular dependence (w=K-§)

pa

U in the K-q plane

GC(K,q;wzo)
60 F[MeV fm®
0 —
-60 —
-120 F 40 MeV
1 2
g [fm™]

K [fm™]
x0(0,0) = V(K, q)x H(K)x W Nonlocality
Qength

Weak K-dependence!
cea




Ve(K,q)=U(K,q)/U(K,0)~ ¥(q) in the range 10300 MeV

Ve(K.a) Ve(K.a) Ve(K.a)

N\
\\\\@ \\\“\\\\\:\\ 135 MeV
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2
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0 2 0
1 3 =t 1 1 t
qim?y 2 K [fm™) afm?y 2 afm K [fm™)
Ve(K.a) Ve(Ka) Ve(K.a)
\\w\\\\\\ N
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JvH factorization

UK, a;w=0)
60 F[MeVfm’]

0
-60 - -
0(K. q) = W (q) A(K)
0
K [ S0 q[m™]
]
Re AV18
= c\$° ]
Im p-A
0 @
0 1
q [fm ]

0 100
Elap [MeV]




p-p

012345 0123450123245

K [fm?] K [fm?] K [fm?]
1 _2/82
Hoe(s) = amge

FIPB(K) _ e*B2K2/4




N3LO AV18
Energy — fpa Bpp Bpn Bpa Brp Bpn
(MeV)  (fm) (fm) (fm) (fm) (fm) (fm)
1142 089 072 094 | 089 073 0.5
21.0 088 072 094 | 089 072  0.94

—~| 303 088 071 093 | 088 071  0.94

E| 400 088 071 093 | 08 071 093

5| 614 0.87 0.72  0.93 0.86 0.70  0.92

C | 80.0 087 072 093 | 08 071  0.92
1350 087 075 092 | 083 071  0.89
2000 086 078 090 | 080 072  0.85
1142 057 061 051 | 047 058  0.03
21.0 058 061 050 | 046 059 —

2] 303 058 062 049 | 048 059 —

=] 400 058 063 048 | 048  0.60 —

L] 614 057 063 043 | 046  0.60

&1 80.0 055 062 037 | 037 059
1350 048 059 013 | 032 056 —
2000 044  0.56 — 022 051 —




W [ MeV fm® ]

-100
-120

L AV18 (b)’

Volume

100
Elap [MeV]

integral

ELap [MeV]

W =

100
E p [MeV]

J
27)3




— N3LO

0 30 60 90 120 150 0 30 60 90
6. [deg] 6.m. [deg]




Nonlocalities for n+A & p+A
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N3LO (c) —_—————
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Concluding remarks

- To the lower order in the angular expansion q, K the microscopic potential leads to
JvH separable structure of the central and the spin-orbit.

- Using our microscopic model, separability is validated for about E < 30MeV
- JvH validates Gaussian nonlocality.

- For E < 65 MeV/, the range of the nonlocality 3 is 0.86-0.89 fm for the central part
and 0.46-0.58 for spin-orbit part.

- JvH offers a new link between theory and phenomenology. It will be interesting to
explore higher orders.




@ Numerical Tools for reaction calculations




o TALYS, CONRAD, EMPIRE




Phaseshift determination

Integro-differential Schrédinger equation

NG |:d2 I(1+1)

2m |dr2 2

uym(r) + /dr’ru,jm(r, r’)r’ujym(r/) = E ujm(r)

Equations can be expressed on a radial mesh with h the step. The potential is negligible at Ry.x = h X N.

u(r) — oy

d? Ujip1 — 2up +uj_q
—u(r) — —
dr? h?
v(r, rl) — v
Schrédinger equation reads
My 1
o ) u 0
1 -2 1
- i —
1 -2 1 :
: 0
o2 M un -1
N,N

Conditions at the limits: up =0, uyy1 =1, Mj ny1 =0




Phaseshift determination

ST M pue =
K

-1

Solution merges from matrix inversion

o= (),

’

Solution can further be re-injected into Schrédinger equation with better precision and
iterated until the needed precision is obtained.




Phaseshift determination

s A

Connection to asymptotic solutions

ugi(r) e Clcos(8)ji(kr) — sin(d;)ny(kr)]

avec K =—(2m/h’) x E

with jj, n; Bessel and Neumann spherical functions.

Normalisation by a Dirac in energy
C— /12m
T h2k

Phaseshift is obtained from

upy _ <05(35)ji (KRmax) — sin(3y) nj (kRmax)

un COS((S/_,')j/(kRmaX) e sin(é,j)n,(kRmaX)




Phaseshift determination

' \

Connection to asymptotic solutions
ui(r) = Cleos(byi(kr) = sin(6y)m (k)]
avec kK =—-(2m/h’) x E

with ji, n; Bessel and Neumann spherical functions.

Normalisation by a Dirac in energy

12m

=\

Phase shift

unji (KRmax) — upiji(kRmax)

tan(d;) =
an(9y) unn)(kRmax) — upyni(kRmax)




La diffusion de nucléon a PN

anu NN
uopesalu|

B

ALBATROS/BHF

Interaction
Gogny

Phéno

Sur fichier

TRUC

STRUCTURE
HF(B).(Q)RPA
MPMH
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gg
z3
Potentiels phéno. L ‘ CRAPO NEPTUNO T‘ Latlilalesls HEEDTC) 2z
SIDES %
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SWANLOP ECIS 25
35
]
s
g

Observables
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Codes de résolution de I'équation de diffusion

Faire évoluer les outils numériques pour gagner en efficacité et pour ouvrir de
nouvelles perspectives.

.. et peu & peu s'émanciper des codes de Jacques Raynal: DWBA et ECIS

- Diffusion non-locale: DWBA — NUCLEON,SIDES,SWANLOP

@ SIDES: Schrédinger Integro-Differential Equation Solver

Méthode de Numérov modifiée de J. Raynal

G. Blanchon, M. Dupuis, H. F. Arellano, R. N. Bernard, B. Morillon, CPC 254 (2020) 107340
@ SWANLORP: Scattering WAve NonlLOcal Potential

Résolution de I'équation de Lippmann-Schwinger

H. F. Arellano, G. Blanchon, CPC 259 (2021) 107543
@ NUCLEON

Résolution sur base de polynémes de Tchebyshev (B. Morillon)

- Voies couplées locales: ECIS — PESSAH

Un code plus rapide et parallélisé (P. Romain)

- Voies couplées non-locales: ECANOL

A. Nasri, M. Dupuis, G. Blanchon, H. F. Arellano and P. Tamagno, EPJA (2021) 57: 279




Potentiels proposés

® Koning-Delaroche global local potential (de 1 keV 4 200 MeV)

A. J. Koning and J.-P. Delaroche NPA 713(3-4) 231 - 310, 2003.

® Morillon-Romain global dispersive local potential (de 1 keV 4 200 MeV)

B. Morillon and P. Romain. PRC, 70 014601 (2004) and PRC, 76(4) 044601 (2007).
® Morillon global dispersive nonlocal potential (Talk)

® Perey-Buck global nonlocal potential (below 30 MeV)

F. Perey and B. Buck. Nucl. Phys., 32 353 — 380, 1962.

® Tian-Pang-Ma global nonlocal potential (below 30 MeV)

Y. Tian, D.-Y. Pang, and Z.-Y. Ma. IJMP E, 24(01) 1550006, 2015.

® Mahzoon nonlocal dispersive potential

M. H. Mahzoon, R. J. Charity, W. H. Dickhoff, H. Dussan, and S. J. Waldecker. PRL 112 162503, 2014.

+ Potentiels sur un mesh radial ou en moment




Non-local, Voies non-couplées

NUCLEON, SIDES, SWANLOP validés avec le code DWBA

Résolution de I'équation de Schrddinger intégro-differentielle

dr? r2

B2 [d®  10+1 oo
——2 |: ( ) f,j(k, r)+ r/o V/j(r, s E)f/]-(k, r/)rldr/ = Ef/j(k, r),
m

; Résolution \( Observables
r(G)

el




Non-local, Voies non-couplées

NUCLEON, SIDES, SWANLOP validés avec le code DWBA

Résolution de I'équation de Schrddinger intégro-differentielle

B2 [d? 1 +1) oo , N
_Z [ﬁ - 2 f,j(k, r)+ r/o V/j(r, r ;E)f/]-(k, ryrdr’ = Ef/j(k, r),

AL Résolution \( Observables
G

D)




Non-local, Voies couplées

Code ECANOL (Theése d’Amine Nastri)

rl rl
G
oG (\ " Résolution Observables
_ ). > | élastiques
g, . et inélastiques
r \ (Jllll)
(.1




Non-local, Voies couplées

Validation de ECANOL avec le code DWBA

—

(4.h 0 Résolution b N
servables
> élastiques

rr.o | Gu)




Non-local, Voies couplées

Validation de ECANOL avec le code ECIS

rl rl
r X CNA , .
(.1 (J'l()\.. " Resolution Observables
L > o élastiques
R N et inélastiques
o N
o G




SCATTERING OFF TARGET WITH PAIRING ]




Spherical Hartree-Fock (~30 nuclei)

0
» 10 20 % 40 % 6 70 8 90 100 110 120 13 140 150 180 170 180 160 200 210 220 23 240 250 260 20 280 20
N

Calculations with Gogny D1S interaction (S. Hilaire and J.P. Ebran)




Spherical Hartree-Fock-Bogoliubov (~300 nuclei)

o
' 10 20 ® 40 s 6 70 8 90 100 110 120 13 140 180 180 170 180 160 200 210 220 230 240 250 260 20 280 280
N

Calculations with Gogny D1S interaction (S. Hilaire and J.P. Ebran)




Axially-deformed Hartree-Fock-Bogoliubov (~6000 nuclei)

20 3 40 50 6 70 & 0 100 110 120 130 140 150 160 170 180 190 200 210 220 200 240 250 260 270 280 290

Calculations with Gogny D1S interaction (S. Hilaire and J.P. Ebran)




Quasiparticle scattering

HFB equations in coordinate space
0 ¢1(E, ro)

B h(ro, r'o’) A(ro,r'o’) #1(E,r'a’)\ _ (E+ X
/ r Z Aro,ro’)  —h(ro,re’)) \éa(E,va’)) = 0 E—X) \$2(E, ro)
@ n(ro,r'o’) = Kinetic term and mean-field

@ A(ro,r'o’) = Pairing field

Multipole expansion in terms of (j, /)

ui(E,r m ~
{¢1(E7"‘7)_ U(r )yju/z("a)

vii(E,r ~
$2(E,ro) = WEDym (ko)

HFB fields and the chemical potential A are extracted from an HFB/D1S code.
(Dechargé, Gogny PRC 21, 1568 (1980))




For a given (j, /), we have

b —(E+X) ... hi,n A1 [SWY u 0
hy 1 o by = (E+N) Ay INYRY w | _ | -
A1y Ap —hg—(E=X) ... —hi v 0
Ay e An,n —hy 1 s —hy y = (E= X)) v "

o Conditions at the limits:

Up = Vo = 0
un+1 = Yo
w1 = Y1

o Inversion of the matrix (2N x 2N) M gives the solutions

ui

(M7, (),

’

Vi

-Yo (M_l)i+N +Y: (M_l)

s

i+N,2N




@ Mean field and pairing fields are zero at Rmax = N X h

o Connecting to asymptotic solutions for (E + X) > 0
ugi(r) e Clcos(dj)ji(ar) — sin(;)m(ar)]

V/j(r) rﬁioo Dh/(ﬁr)

with h; the spherical Hankel function, o® = —(2m/h?)(\ + E),
8 = (2m/R)(\ - E).
@ u is normalized by a Dirac in energy — C

@ Yo, Y1, D et §; are determined ensuring the continuity of u, v, v’ et v/ at Rpax




o Outlook & Bibliography




A message from the 50's

Lecture from Claude Bloch 1955:

...in order to obtain a theory of nuclear reactions usable for the interpretation of experiments, it is advisable to avoid introducing
a too detailed description of the nuclei, which could only be done at the cost of very rough approximations. In this way, one gives
up the idea of relating all the experimental results to the laws governing elementary phenomena. What we will try to do is to
define a minimum number of parameters sufficient to describe the observational results. The interest of such a theory is to reduce
a large number of experimental results to a smaller number of parameters. The disadvantage of the method is that the
parameters introduced in this way do not have a fundamental meaning. It will be up to a more sophisticated theory to relate
them to the interaction laws of elementary particles.
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@ Systematics are made possible with comping power




- Sujets non abordés dans cette présentation:

o Diffusion de particules composites

Potentiels déformés non-locaux phénoménologiques

Justification microscopique du potentiel Perey-Buck

Les approches mathématiques autour des potentiels optiques (P. Chau et B. Ducomet)

)
)
)
o Les potentiels ab-inito au CEA




FURTHER READINGS

Quelques applications du formalisme des fonctions de Green a I'étude des noyaux,
N. Vinh Mau

Quantum Theory of Many-Particle Systems,
Fetter and Walecka.

o A Guide to Feynman Diagrams in the Many-Body Problem,
Mattuck.

o Quantum Statistical Mechanics: Green's Function Methods in Equilibrium and
Non-Equilibrium Problems,
Kadanoff.

@ The nuclear many-body problem,
Ring and Schuck.

o Optical potentials for the rare-isotope beam era,
Hebborn et al.
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