

Time dependent approaches in nuclear physics

David Regnier^{1,2}

1. CEA, DAM, DIF, 91297 Arpajon, France

2. Université Paris-Saclay, CEA, LNCE, 91680 Bruyère-le-Châtel, France

david.regnier@cea.fr

What is this course about ?

A survey of **theoretical approaches** that explicitly treat the **time evolution** of an atomic nucleus

Non equilibrium initial condition

Evolution of the system in time

Nuclear time scales

- large molecule motion: 1 picosecond $(10^{-12}s)$
- electronic excitation: 1 femtosecond $(10^{-15}s)$
- shortest laser pulse: 1 attosecond $(10^{-18}s)$
- nuclear motion: 1 zeptosecond $(10^{-21}s)$

Direct measurement of a time dependent process not yet achieved

Nuclear time scales

- large molecule motion: 1 picosecond $(10^{-12}s)$
- electronic excitation: 1 femtosecond $(10^{-15}s)$
- shortest laser pulse: 1 attosecond $(10^{-18}s)$
- nuclear motion: 1 zeptosecond (10^{-21} s)

Why treating explicitly the dynamics ?

Why treating explicitly the dynamics ?

X To predict observables as a function of time

★ To determine decay lifetimes

- **V** To predict the output of reactions
 - with large number of output channels,
 - and collective behaviors.

Nuclear half-lives

Static versus time-dependent Schrödinger equations

Static

$$\hat{H}\psi_n=E_n\psi_n$$

Full diagonalization
 Dynamics for any initial condition

$$egin{aligned} \psi(t=0) &= \sum_n c_n \psi_n \ \psi(t) &= \sum_n c_n \psi_n e^{-irac{E_n}{\hbar}t} \end{aligned}$$

Time-dependent

$$i\hbar\partial_t\psi=\hat{H}\psi$$

Numerical integration on time
 Dynamics for **one** initial condition

$$\psi(t+dt)\simeq\psi(t)-rac{i}{\hbar}\hat{H}\psi(t)$$

Static versus time-dependent Schrödinger equations

Static

$$\hat{H}\psi_n=E_n\psi_n$$

Full diagonalization
 Dynamics for any initial condition

$$\psi(t=0) = \sum_n c_n \psi_n
onumber \ \psi(t) = \sum_n c_n \psi_n e^{-irac{E_n}{\hbar}t}$$

 $\mathsf{Cost} \simeq O(\dim^3)$

Time-dependent

$$i\hbar\partial_t\psi=\hat{H}\psi$$

Numerical integration on time
 Dynamics for one initial condition

 .

$$\psi(t+dt)\simeq\psi(t)-rac{\imath}{\hbar}\hat{H}\psi(t)$$

$$\mathsf{Cost} \simeq O(N_{ ext{inital conditions}} imes N_{ ext{steps}} imes ext{dim}^2)$$

Static versus time-dependent Schrödinger equations

Static

$$\hat{H}\psi_n=E_n\psi_n$$

Full diagonalization
 Dynamics for any initial condition

$$\psi(t=0) = \sum_n c_n \psi_n
onumber \ \psi(t) = \sum_n c_n \psi_n e^{-irac{E_n}{\hbar}t}$$

 $\mathsf{Cost} \simeq O(\dim^3)$

Time-dependent

$$i\hbar\partial_t\psi=\hat{H}\psi$$

Numerical integration on time
 Dynamics for **one** initial condition

$$\psi(t+dt)\simeq\psi(t)-rac{i}{\hbar}\hat{H}\psi(t)$$

 $\mathsf{Cost} \simeq O(N_{ ext{inital conditions}} imes N_{ ext{steps}} imes ext{dim}^2)$

- In practice, dim > 10^{200} (Eddington number: $10^{80} \simeq$ atoms in the univers)
- Choose what converges the fastest to predict a specific set of observables

Which phenomena can we tackle whith dynamics ?

Sucessfull predictions in nuclear physics

Collective vibrations:

- response to a gamma excitation
- $\circ\,\,$ cross section for (n,γ) reactions
- Fission:
 - mass and charge yields
 - fragments characteristics
- Heavy ion collision (low energy):
 - fusion barriers
 - nucleon transfer
 - fusion/fission versus quasi-fission

Related fundamental questions

How were the heavy elements synthetized ?

Ī

Related fundamental questions

Is there a superheavy island of stability ?

How to approximate the dynamics ?

Main references

Review papers

- Time-dependent density-functional description of nuclear dynamics
 - T. Nakatsukasa et al., Rev. Mod. Phys, 88 (2016)
- Heavy-ion collisions and fission dynamics with the time-dependent hartree-Fock theory and its extensions C. Simenel, A.S. Umar, Prog. Part. Nucl. Phys. **103** (2018)
- The time-dependent generator coordinate method in nuclear physics M. Verriere, D. Regnier, Front. Phys. 8 (2020)

Books

- Quantum theory of finite systems J.-P. Blaizot, G. Ripka, MIT Press (1985)
- The nuclear many-body problem
 P. Ring, P. Schuck, Springer science (2004)

Lectures

- Microscopic approaches for nuclear Many-body dynamics
 - C. Simenel et al., arXiv:0806.2714v2 (2009)

Table of contents

- I. Time dependent variational principles
- II. Time dependent Hatree-Fock equation of motion
- **III. Collective vibrations**
- IV. Additional comments on time-dependent Hartree-Fock
- V. Low-energy heavy-ion collisions
- VI. Nuclear fission

Time dependent variational principle(s)

A state $|\psi(t)
angle \in [t_i, t_f] o \mathcal{H}$ is solution of the time dependent Schrödinger equation $i\hbarrac{\partial}{\partial t}|\psi(t)
angle = \hat{H}|\psi(t)
angle,$

'if and only if' it makes an action $S[\ket{\psi(t)}]:[t_i,t_f] imes \mathcal{H} o\mathbb{C}$ stationary:

 $\delta S \left|_{\ket{\psi(t)}}
ight. = 0.$

The simplest possible action of the system for normalized states is:

$$S[|\psi(t)
angle,\langle\psi(t)|]=\int_{t_i}^{t_f}\langle\psi(t)|i\hbarrac{d}{dt}-\hat{H}|\psi(t)
angle dt.$$

Remarks:

- Stationary \neq extremal or minimal
- Several choices of action yield the time dependent Schrödinger equation
- Some variational principle do not give any information on the phase or the norm of the state

P. Kramer, M. Saraceno, Geometry of the Time-Dependent Variational Principle in Quantum Mechanics (1981)

Variational principle(s) as an approximation

We build an approximation of the solution of the Shrödinger equation by:

- 1. defining a subspace $[t_i,t_f] imes \Omega \subset [t_i,t_f] imes \mathcal{H}$,
- 2. defining the action $ilde{S}[| ilde{\psi}(t)
 angle]:[t_i,t_f] imes\Omega o\mathbb{C}$,
- 3. deriving the equation of motion from the condition that $ilde{S}$ is stationary,
- 4. solving the equation of motion.

 \implies Schrödinger evolution under the constraint that the state stays in Ω at all time (infinite potential in directions perpendicular to Ω).

Usual cases:

- Ω is a sub-vector space of ${\cal H}$

$$i\hbarrac{\partial}{\partial t}ert ilde{\psi}(t)
angle=(\hat{P}_{\Omega}\hat{H}\hat{P}_{\Omega}^{\dagger})ert ilde{\psi}(t)
angle$$

• We know a real/complex parameterization of Ω :

$$| ilde{\psi}(t)
angle = | ilde{\psi}(x_1(t),\cdots,x_k(t))
angle$$

V. I. Arnold, Mathematical method of classical mechanics (1989)

Time Dependent Hartree-Fock

We look for the equation of motion under the constraint that:

• the state is a normalized N-fermions Slater determinant at all times.

$$\psi(r_1,\cdots,r_N,t) = rac{1}{\sqrt{N!}}\sum_{\sigma\in\{ ext{N-permutation}\}} ext{sign}(\sigma)\prod_{i=1}^N \phi_{\sigma(i)}(r_i,t)$$

with

$$\langle \phi_i(t) | \phi_j(t)
angle = \delta_{ij}.$$

Remarks on Slater determinants:

• One body density matrix:

$$ho(r,r')=\sum_{i=1}^N \phi_i(r)\phi_i^*(r')$$

• One body local density:

$$ho(r)=
ho(r,r'=r)$$

Derivation of the TDHF equation

The action of interest reads:

$$S[\phi_1(r,t)\cdots \phi_N(r,t)] = \int_{t_i}^{t_f} dt \left[i\hbar \sum_{i=1}^N \langle \phi_i | \dot{\phi}_i
angle - \langle \psi(t) | \hat{H} | \psi(t)
angle - \sum_{ij}^N \lambda_{ij} \langle \phi_i | \phi_j
angle
ight]$$

We consider here:

$$\hat{H} = \int_{r_i r_j} t_{r_i r_j} c^\dagger(r_i) c(r_j) + rac{1}{4} \int_{r_i r_j r_k r_l} ar{v}_{r_i r_j r_k r_l} c^\dagger(r_i) c^\dagger(r_j) c(r_l) c(r_k),$$

where $c^{\dagger}(r)$ creates a single particle at position r.

The energy of the Slater reads

$$\langle \psi(t) | \hat{H} | \psi(t)
angle = \int_{r_1 r_2} t_{r_1 r_2}
ho_{r_2 r_1} + rac{1}{2} \int_{r_1 r_2 r_3 r_4}
ho_{r_3 r_1} ar{v}_{r_1 r_2 r_3 r_4}
ho_{r_4 r_2}.$$

Derivation of the TDHF equation

Making the action stationary consists here in finding the single particle states $\phi_i(r)$ and the λ_{ij} such that $orall i,j\leq A$:

$$rac{\partial S[\phi]}{\partial \phi_i(r,t)}=0, \quad rac{\partial S}{\partial \phi_i^*(r,t)}=0, \quad \langle \phi_i(t) | \phi_j(t)
angle = \delta_{ij}$$

This yields the system

$$egin{aligned} &i\hbar\dot{\phi}_i(rt)=\hat{h}[
ho]\phi_i(rt)+\sum_j\lambda_{ij}\phi_j(rt)\ &\langle\phi_i(t)|\phi_j(t)
angle=\delta_{ij} \end{aligned}$$

Using the first equation we notice that

$$i\hbarrac{\partial}{\partial t}\langle\phi_i|\phi_j
angle=\sum_k\left[\langle\phi_i|\phi_k
angle\lambda_{kj}-\lambda_{ik}\langle\phi_k|\phi_j
angle
ight]$$

Taking $\lambda_{ij} = 0$ and starting with orthonormal states gives one solution.

The usual equation of motion

A system of A non linear coupled equations:

$$i\hbarrac{\partial}{\partial t}egin{bmatrix} \phi_1({f r},\sigma,t)\ \ldots\ \phi_n({f r},\sigma,t) \end{bmatrix} = egin{bmatrix} \hat{h}[
ho]\phi_1({f r},\sigma,t)\ \ldots\ \hat{h}[
ho]\phi_n({f r},\sigma,t) \end{bmatrix}$$

A picture of this first order evolution:

The mean field Hamiltonian reads in this case

$$egin{aligned} \hat{h}_{rr'}[
ho] &= rac{\partial E}{\partial
ho_{r'r}} \ &= t_{rr'} + \int_{r_1r_2} ar{v}_{rr_2r'r_1}
ho_{r_2r_1} \end{aligned}$$

Break: Let us write down a pseudo-code that solves TDHF for N spinless particles

Table of contents

- I. Time dependent variational principles
- II. Time dependent Hatree-Fock equation of motion
- **III. Collective vibrations**
- IV. Additional comments on time-dependent Hartree-Fock
- V. Low-energy heavy-ion collisions
- VI. Nuclear fission

Application to collective vibrations

Quadrupole excitation of 16 O

Application to collective vibrations

Monopole excitation of 16 O

Mean field evolution of multipole moments

For a given multipol excitation:

The associated strength function is the **Fourier transform** of the time evolution of the expectation value of the multipol observable after the excitation.

Don't forget: 300 fm/c \simeq 1 zs

How to build the initial state for these calculations ?

Solution 1: Perform a constrained mean field calculation at a non equilibrium point.

How to build the initial state for these calculations ?

Solution 1: Perform a constrained mean field calculation at a non equilibrium point.

Solution 2:

Boosting the mean field ground state for a specific one body observable:

$$|\psi(t=0)
angle = e^{-ip\hat{Q}}|\psi_{
m GS}
angle.$$

In the TDHF case it reduces to applying the operator on all single particle states:

$$orall i: |\phi_i(t=0)
angle = e^{-ipQ} |\phi_{i, ext{GS}}
angle.$$

Comparison to linear response (RPA)

Random Phase Approximation (RPA) \simeq TDHF in the limit of small fluctuations in the neighborhood of the Hartree-Fock ground state

Strength function of the isoscalar quadrupol giant resonance of Sm154. TDBCS (symbols) is compared to QRPA (lines).

G. Scamps et al., PRC 89 (2014)

(Very) recent highlights

Generalized time-dependent generator coordinate method for small and large amplitude collective motion B. Li, *et al.*, arXiv:2304.13369v1, (**April 26 2023**)

(Very) recent highlights

Quantum fluctuations induce collective multi-phonons in finite Fermi liquids P. Marevic, *et al.*, arXiv:2304.0738v1, (**April 14 2023**)

Time-dependent Hartree-Fock misses multi-phonons

Take away messages

Small amplitude collective vibrations in nuclei

Comparison dynamics vs static approaches

State-of-the-art

- Time-dependent Bardeen-Cooper-Schrieffer
 - \rightarrow giant resonance frequency
- Some current limitations:
 - underestimate damping
 - missing multi-phonons

On going work

- Approximation on a larger variational space (MC-TDDFT)
- Second RPA
- ...

Table of contents

- I. Time dependent variational principles
- II. Time dependent Hatree-Fock equation of motion
- **III. Collective vibrations**
- IV. Additional comments on time-dependent Hartree-Fock
- V. Low-energy heavy-ion collisions
- VI. Nuclear fission

Some properties of the TDHF equation

• Equation of motion of the one body density:

$$i\hbarrac{\partial}{\partial t}
ho = [\hat{h}[
ho];
ho]$$

Conservation of the norm:

$$i\hbarrac{\partial}{\partial t}\langle\psi(t)|\psi(t)
angle=0$$

• Conservation of energy:

$$egin{aligned} &rac{\partial}{\partial t} \langle \hat{H}
angle &= \int_{rr'} rac{\partial E}{\partial
ho_{r'r}} \dot{
ho}_{r'r} \ &= Tr(\hat{h}[
ho]\dot{
ho}) \ &= rac{i}{\hbar} Tr(\hat{h}[
ho]ig[
ho;\hat{h}[
ho]ig]) = 0 \end{aligned}$$

We used here Tr(ABC) = Tr(BCA)

Some more properties of the TDHF equation

• Ehrenfest theorem for one body observables:

$$\hat{O} = \int_{rr'} O_{rr'} c^{\dagger}(r) c(r'), \qquad \langle \hat{O}
angle = Tr(O
ho) \qquad i\hbar rac{\partial}{\partial t} \langle \hat{O}
angle = \left\langle [\hat{h}[
ho]; \hat{O}]
ight
angle$$

Observables that **commute** with the mean field Hamiltonian are **constants of the motion** (e.g. Number of particles, spatial symmetries).

• Equation of continuity:

If $\hat{H} = ext{Kinetic 1 bdy} + ext{zero-range 2 bdy interaction}$,

$$rac{\partial
ho(r)}{\partial t} = -
abla \cdot oldsymbol{j}(r)$$

with the current density of particles

$$oldsymbol{j}(r) = rac{oldsymbol{\hbar}}{2im}\sum_{k=1}^{A}[\phi_k^*
abla\phi_k-
abla\phi_k^*\phi_k] \, ,$$

Including pairing correlation / superfluidity

TDHF 💽 TDBCS, TDHFB, TDSLDA

- Exactly the same methods as in static calculations
- Can be treated:
 - \circ at the Bardeen-Cooper-Schrieffer level (numerical cost $\simeq imes 4$)
 - \circ at the Hartree-Fock-Bogoliubov level (numerical cost $\simeq imes$ dim(one-body basis))
- Is crucial to make simulation of fission !

Blackboard explanation ?

The continuity equation is not satisfied with BCS
 The system has not a good particle number anymore

Table of contents

- I. Time dependent variational principles
- II. Time dependent Hatree-Fock equation of motion
- **III. Collective vibrations**
- IV. Additional comments on time-dependent Hartree-Fock
- V. Low-energy heavy-ion collisions
- VI. Nuclear fission

Predicting heavy-ion collisions with TDHF

Let us focus on low energy heavy-ion collisions

 $E_k \simeq B_{
m Coulomb}$

Major improvement of the TDHF codes in the last decade: unrestricted spatial symmetries

Quasi-fission of 40 Ca + 238 U, with the Sky3D code, \simeq few days.CPU Oberacker *et al.*, PRC 90 (2014)

Fusion cross section

One of the first applications of TDHF in nuclear physics in the 1970's.

How to predict this quantity from TDHF dynamics ?

D. Regnier, Time dependent approaches in nuclear physics, PHENIICS lecture, June 12-16 2023

The starting point

C. Simenel *et al.*. arXiv:0806.2714v2 (2009)

- 1. Compute static HF states for the two reaction partners
- 2. Place them in the simulation box for the collision simulation
- 3. Increase their relative momentum by applying a boost

$$egin{aligned} &orall i\in [1,A_1]: \quad \phi_i'(r)=e^{im\mathbf{v}_1\cdot \hat{\mathbf{r}}}\phi_i(r) \ &orall i\in [1,A_2]: \quad \phi_i'(r)=e^{im\mathbf{v}_2\cdot \hat{\mathbf{r}}}\phi_i(r) \end{aligned}$$

Determination of the fusion barrier

Case of a head on collision 16 O + 208 Pb

(from C. Simenel et al.Joliot Curie School (2008))

Note:

The fusion barrier depends on the initial impact parameter

Reconstruction of the fusion cross section

- 1. Find the fusion barrier for various impact parameters with TDHF
- 2. Reconstruct the cross section as a sum over the impact parameters that can fuse for a given energy

$$\sigma_{\rm fus}(E_{1\rm ab}) = \frac{2\pi}{k^2} \sum_{l} (2l+1)$$
(4a)
$$\approx \frac{\pi\hbar^2}{\mu E_{1\rm ab}} \left[(l_{>}+1)^2 - (l_{<}+1)^2 \right].$$
(4b)

C. Simenel et al.. arXiv:0806.2714v2 (2009)

Reconstruction of the fusion cross section

- 1. Find the fusion barrier for various impact parameters with TDHF
- 2. Reconstruct the cross section as a sum over the impact parameters that can fuse for a given energy

$$\sigma_{\rm fus}(E_{1\rm ab}) = \frac{2\pi}{k^2} \sum_{l} (2l+1)$$
(4a)
$$\approx \frac{\pi\hbar^2}{\mu E_{1\rm ab}} \left[(l_{>}+1)^2 - (l_{<}+1)^2 \right].$$
(4b)

C. Simenel et al.. arXiv:0806.2714v2 (2009)

Take away messages:

- TDHF has a **classical behavior for** the expectation values of **one-body observables** (here the distance between the two fragments)
- We need to add collective fluctuations to reproduce cross sections

For recent applications see: K. Sekizawa, Front. in Phys., Mini Review (2019)

Table of contents

- I. Time dependent variational principles
- II. Time dependent Hatree-Fock equation of motion
- **III. Collective vibrations**
- IV. Additional comments on time-dependent Hartree-Fock
- V. Low-energy heavy-ion collisions
- VI. Nuclear fission

Simulating the fission dynamics

D. Regnier, Time dependent approaches in nuclear physics, PHENIICS lecture, June 12-16 2023

Fission with TDBCS

Fission of a 258 Fm

Fission with TDHF: the need for pairing

2014: First fission simulations ²⁵⁸Fm, ²⁶⁴Fm (no pairing)
C. Simenel *et al.*, PRC 89 (2014)
2015: ²⁵⁸Fm with pairing (TDBCS)
G. Scamps *et al.*, PRC 92 (2015)

• 60 to 80% of the fragments excitation energy is generated during the rapid descent to scission

2016: ²⁴⁰Pu with pairing (full TDHFB) A. Bulgac *et al.*, PRL **11** (2016)

• Reproduction of the experimental total kinetic energies within 3%

2021-2022: First prediction of the fragments spins and orbital moment A. Bulgac *et al.*, PRL **126** (2021) A. Bulgac *et al.*, PRL **128** (2022)

Method Numerical cost for 10-20 zs		
TDHF	few days, few CPU	
TDBCS	1 week, few CPU	
TDHFB	10h, 1700 GPU	

Recent highlight with TDHFB

First prediction of the distribution of intrinsic and orbital spin distribution of a fission of 252 Cf A. Bulgac *et al.*, PRL 128 (2022)

Limitations of the time dependent mean-field picture

Too sharp distributions for the fragment observables

Charge distribution in one fragment for 3 TDBCS simulations of 258 Fm fission G. Scamps *et al.*, PRC **92** (2015)

No tunneling through the fission/Coulomb barrier

A side step toward TDGCM

Another variational approach tailored for fission !

D. Regnier, Time dependent approaches in nuclear physics, PHENIICS lecture, June 12-16 2023

Time Dependent Generator Coordinate Method

A multi-reference ansatz

$$|\psi(t)
angle = \int_q f(q,t) |\phi(q)
angle$$

A two step process:

- 1. Generate an ensemble of deformed quasi-particule vacua $|\phi_{m{q}}
 angle$
- 2. Solve the evolution equation for the mixing function $f({m q},t)$

 $f(\boldsymbol{q},t)$ follows a time dependent Schrödinger equation !

$$|\psi(t)\rangle = f_1(t)|\langle \psi(t)\rangle + f_2(t)|\langle \psi(t)\rangle + \cdots$$

Constrained HFB solutions with \neq shapes, time independent

Example of a n + 239 **Pu fission**

- 1. Choose the collective variables:
 - \circ elongation (Q_{20} in b),
 - $\circ\;$ mass asymmetry (Q_{30} in b $^{3/2}$)
- 2. Calculate potential energy surface and inertia tensor
- 3. Define initial wave packet
- 4. Compute its time evolution
- 5. Extract probability to have a certain split

Evolution of the collective wavepacket $f(\boldsymbol{q},t)$

D. Regnier, Time dependent approaches in nuclear physics, PHENIICS lecture, June 12-16 2023

Large shape fluctuations

Correct width of the fission fragment mass distribution for actinides !

- 1 Pb with the energy balance
- no perfect approach yet...

Table of contents

- I. Time dependent variational principles
- II. Time dependent Hatree-Fock equation of motion
- **III. Collective vibrations**
- IV. Additional comments on time-dependent Hartree-Fock
- V. Low-energy heavy-ion collisions
- VI. Nuclear fission

A landscape of theoretical methods

- Balian-Veneroni: variance of one-body observables
- TD-2RDM: evolution of the 2-body density matrix
- MC-TDHF: mix of TDHF and TDGCM

Overall comparison

Semi-classical ensemble	Multi-configuration
	$(\phi_{HFB}(\theta_A, \theta_B))$
 More collective fluctuations (standard deviation of 1-body observables) Low cost, parallel algorithms Misses quantum interferences 	 Quantum fluctuations, probability distribution Difficulty to get both fluctuations and diabatic motion High cost, parallel algorithms in some cases
	Semi-classical ensemble Semi-classical ensemble Semi-classical ensemble Semi-classical ensemble P(p) P(

We count on you to develop the ultimate approach !

Bonus

Some open source codes for nuclear dynamics

- Sky3D-1.1
 - B. Schuetrumpf *et al.*, CPC 229 (2018): The reference Skyrme TDHF+BCS open source code
- LISE
 - S. Jin et al., CPC 269 (2020):
 - A Skyrme full TDHFB package
- FELIX-2.0
 - D. Regnier et al, CPC 225 (2018):
 - A time dependent Schrödinger equation solver for TDGCM+GOA purposes

Thank you for your attention !

CRAIYON: 'Atomic nucleus in the quantum realm'

D. Regnier, Time dependent approaches in nuclear physics, PHENIICS lecture, June 12-16 2023