Time-resolved spectroscopy for Z stellar opacity research

G. P. Loisel¹, J. E. Bailey¹, T. Nagayama¹, S. B. Hansen¹, G. S. Dunham¹, P. D. Gard¹, A. P. Colombo¹, A. D. Edens¹, R. Speas¹, Q. Looker¹, M. Kimmel¹, J. Stahoviak¹, J. L. Porter¹, E. C. Harding¹, G. A. Rochau¹, C. J. Fontes², C. Blancard³, Ph. Cossé³, G. Faussurier³, F. Gilleron³, J.-C. Pain³, D. Aberg⁴

¹Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
²Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
³CEA, DAM-DIF, Arpajon, F-91297, France
⁴Lawrence Livermore National Laboratory, Livermore, California 94550, USA

Time-resolved spectroscopy using a novel hCMOS Ultra-fast X-ray Imager (UXI) is transforming stellar interior opacity measurements at the Sandia Z facility. Calculated opacities disagree with measured opacities [Bailey et al. Nature (2015), Nagayama et al. PRL (2019)], which questions the accuracy of calculated opacities used for the solar interior. The novel time-resolved data help to resolve this dilemma in three unprecedented ways. First, time-resolved measurements of the backlighter history, sample evolution, together with calculated opacities at each time step allows us to assess how temporal integration have affected the published, film-based results. These tests show that the temporal integration cannot explain the reported discrepancy. Second, measurements of the sample temperature and density evolution refine our understanding of the Z opacity platform and enable improved experimental design. Third, Sandia's UXI technology enables measurements of iron opacities at multiple conditions from a single experiment. This not only increases the number of opacity measurements per experiment but also allows to study how opacity changes with conditions from a single experiment. In this presentation, I will summarize the results on sample evolution in Fe experiments as well as progress towards the first extraction of absolute *time-resolved* opacity and remaining challenges to obtain that goal.

SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525.

* E-mail: <u>gploise@sandia.gov</u>