Radiative cooling of an Al plasma in an AlTi or AlAu mixtures heated by an ultraintense laser pulse

L. Lecherbourg^{1,2*}, Ch. Blancard^{1,2}, S. Baton³, A. Chaleil¹, P. Cossé^{1,2}, L. Duthoit^{1,3}, G. Faussurier^{1,2}, L. Gremillet^{1,2}, B. Loupias¹, F. Perez³, J-.C. Pain^{1,2}, O. Poujade^{1,2}, and P. Renaudin¹

¹CEA, DAM, DIF, F-91297 Arpajon, France ²Univ. Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France ³LULI, CNRS, École Polytechnique, CEA, Sorbonne université, 91120 Palaiseau, France

The rapid heating and cooling dynamics of thin solid foils driven by an ultraintense ($\sim 10^{18}$ W/cm²) picosecond laser pulse has been experimentally studied through time-integrated and time-resolved x-ray emission spectroscopy as well as 2D x-ray imaging. Targets consisted of plastic foils with buried Al, Al₄₂Ti₅₈, or Al₈₅Au₁₅ layers, with Al as a tracer to infer the plasma conditions. Our measurements indicate that the Al K-shell emission occurs over a shorter duration and from a narrower region in AlTi or AlAu mixtures compared to pure Al samples.

The experimental data are then compared with the 2D hydrodynamic-radiative code TROLL and the atomic physics code SAPHyR. Approximating the heating phase using a simple description of a collisional heating, the simulations reproduced the trends to a good approximation, and pinpoint the importance of radiative cooling in high-Z samples.

Figure 1. Example of time-integrated and space-integrated high resolution spectra of Al, AlTi and AlAu samples. (left) Raw data, (right) line profiles.