Spectroscopic characterization of compressed core conditions in directly-driven magnetized cylindrical implosions

R. Florido¹*, A. Bordón¹, M. A. Gigosos², G. Pérez-Callejo², M. Bailly-Grandvaux³, C. A. Walsh⁴, F. Beg³, R. C. Mancini⁵, C. McGuffey⁶, J. Saret³, F. Suzuki-Vidal⁷, C. Vlachos⁸, J. J. Santos⁸

¹Departamento de Física, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
²Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, Valladolid, Spain
³Center for Energy Research, University of California San Diego, California, USA
⁴Lawrence Livermore National Laboratory, California, USA
⁵Department of Physics, University of Nevada, Reno, USA
⁶General Atomics, California, USA
⁷First Light Fusion, Oxfordshire, United Kingdom
⁸Centre Lasers Intense et Applications, Universitè de Bordeaux, CNRS, CEA, Bordeaux, France

The application of external magnetic fields in inertial confinement fusion (ICF) implosions has been identified as a method to enhance hot-spot performance, reducing thermal losses and enabling higher fusion yields. To facilitate the investigation of the magnetic-field compression mechanism, a cylindrical geometry is particularly appropriate. This works discusses the use of Ar K-shell spectroscopy to characterize the core conditions in magnetized cylindrical implosion experiments conducted at the OMEGA laser facility. The targets, filled with Ar-doped deuterium, were symmetrically imploded using a 40-beam, 14.5 kJ, 1.5 ns laser drive. Recorded space- and time-integrated Ar K-shell spectra exhibit highly reproducible, distinctive features both with and without an imposed magnetic field. A uniform spectroscopic model was insufficient to replicate the observations; however, a multizone spectroscopic model, combined with a random-search χ^2 minimization procedure, successfully fitted the experimental spectra. The analysis allows to extract intensity-weighted average conditions of the cylindrical imploded core, namely revealing a 50% core temperature rise at half mass density when a 30 T seed B-field was applied. Additionally, the methodology shows potential for deriving a coarse-grained radial profile of core conditions at stagnation, supporting the formation of a hotter central spot in the magnetized scenario. Concurrently, the experimental spectra align well with synthetic spectra obtained by post-processing extended-magnetohydrodynamics simulations, incorporating detailed atomic-kinetics and Starkbroadened line shapes. This provides strong evidence that the attained core conditions at peak compression are consistent with the impact of a 10-kT compressed field.

References

[1] M. Bailly-Grandvaux et al., Phys. Rev. Research 6, L012018 (2024).

* E-mail: ricardo.florido@ulpgc.es