

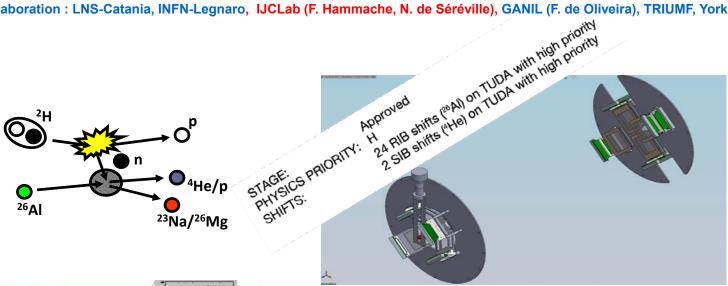
Shape coexistence in the ^{116,118,120}Cd, ^{140,142,144,146}Ba and ^{134,136}Nd studied using β decay and the GRIFFIN setup

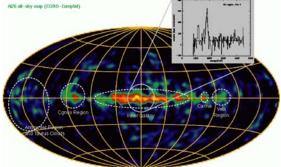
•Spokespersons : C. M. Petrache (IJCLab), C. Andreoiu (SFU/TRIUMF)

Decay spectroscopy of 100 Eu: Quasiparticle configurations of excited states and structure of $K^{\pi} = 4^+$ bandheads in 160 Gd

D. Yates *et al.* Phys. Rev. C **107**, 064309 – Published 15 June 2023 Shape coexistence is a topic of outmost importance in nuclear structure and in recent years has been studied intensively using various setups. One of the best in the world is GRIFFIN + ancillaries (PACES, DESCANT) at TRIUMF.

Significant results have been obtained within this collaboration on ⁸⁰Ge, ^{116,118,129,134}Sn, ^{135,136,137}Nd, and ^{130,131}Ba, ¹⁶⁰Eu from experiments performed using GRIFFIN, FIPPS, GALILEO, JUROGAM.

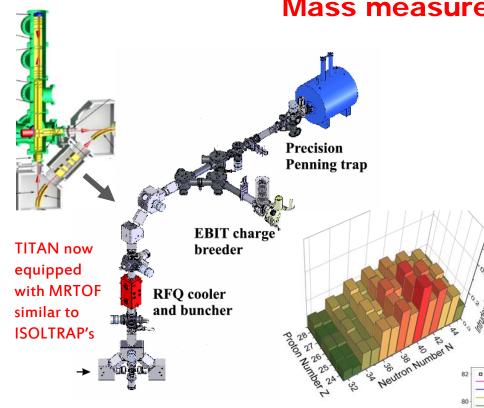

One new experiment was approved and two proposed for a total of 18 days on ^{134,136}Nd, ^{116,118,120}Cd and ^{140,142,144,146}Ba, hopefully scheduled next year.


Demande: 12 kE missions plus 2 kE fonctionnement (3 personnes)

The ²⁶AI(n,p/ α) reaction via the THM @ TRIUMF

Spokespersons: M. La Cognata (LNS-Catania), D. Mengoni (INFN-Legnaro); A. Caciolli

Collaboration : LNS-Catania, INFN-Legnaro, IJCLab (F. Hammache, N. de Séréville), GANIL (F. de Oliveira), TRIUMF, York,...



Budget demandé: 2 missions d'une semaine : 4000 € Observation of 1808.65 keV y-rays from the decay of ²⁶Al to ²⁶Mg in the interstellar medium demonstrated that ²⁶Al nucleosynthesis does occur in the present Galaxy. The present-day equilibrium mass of ²⁶Al was found to be 2.8±0.8 M_{sun}.

The irregular distribution of ²⁶Al emission seen along the plane of the Galaxy provided the main argument for the idea that massive stars dominate the production of ²⁶AI. (Diehl et al 2006)

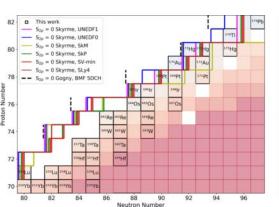
²⁶Al nucleosynthesis in massive stars: ²⁶Al yield depends crucially on ²⁶Al(n,p) and ²⁶Al(n, α) reaction rates Rates x 2 \rightarrow 26 Al yield/2

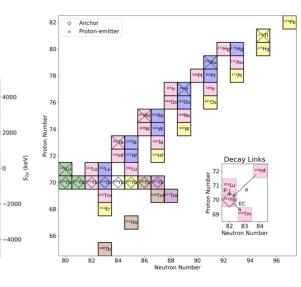
Limongi et al., 2006 & Woosley et al., 2007, Iliadis et al. 2001

Mass measurements with TITAN

IJCLab spokesperson of 4 TITAN experiments (member of 11) Programme 2024:

New proposals for 24O and 30Ne plus program for Highly charged ions with EBIT (S. Naimi and D. Lunney)


AP 2024	<u>Demandé</u>	<u>AP 2023</u>	<u>Demandé</u>
TUDA:	4000	DRAGON:	0
GRIFFIN:	14000	GRIFFIN:	16000
TITAN:	<u>6000</u>	<u>TITAN:</u>	<u>4000</u>
Total:	24000	Total:	20000


Recent publications with TITAN including IJCLab

2023: NPA Jacobs et al. (25-26Ne)

2023: PRC Lykiardopoulos et al. (152–159Yb)

2022: Phys. Lett. B - 64Cr N=40 Iol "summit"2020:

