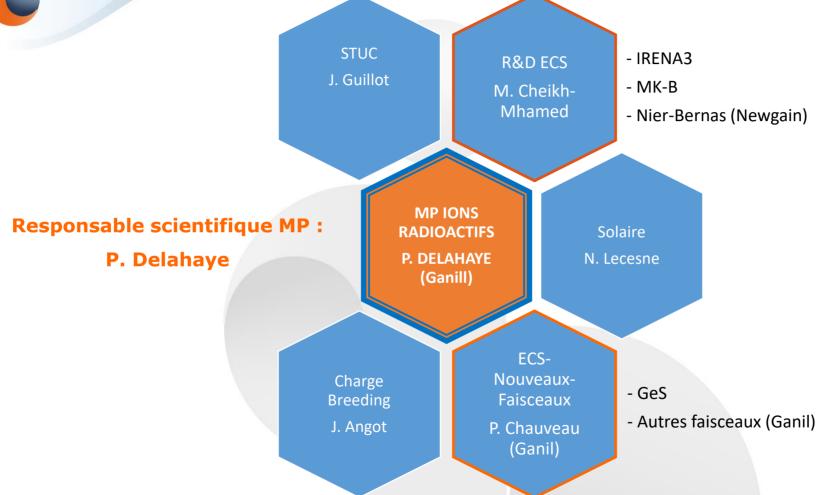


Demandes de moyens 2024 : Sources d'ions ISOL

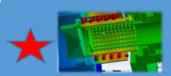
Maher CHEIKH MHAMED

Pôle Physique nucléaire/ groupe FIIRST



Master projet: IONS RADIOACTIFS

Projets liés aux sources d'ions ISOL



Objectif: Optimisation des performances de la source d'ions FEBIAD pour les faisceaux radioactifs

Responsable scientifique : H. Lefort

Objectif : Produire des faisceaux d'ions de plus grandes intensités par hybridation MK5 et Nier-Bernas

Ligne projet: R&D ECS

MK-B

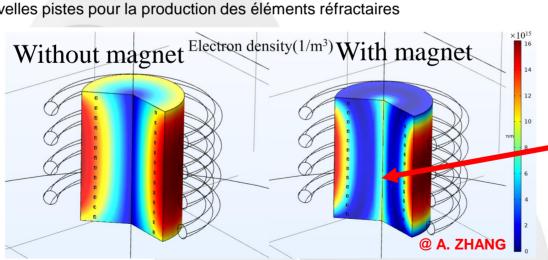
Ligne projet: R&D ECS

Ligne projet : ECS-Nouveaux-Faisceaux

Responsable scientifique: M. Cheikh-Mhamed

Objectif : Produire des faisceaux sulfurés de Ge par le technique ISOL

Projet IRENA3


Principe : Ionisation par impact électronique (famille des FEBIAD) & émission radiale des électrons

- Chauffage hybride (effet joule + BE)
- Nouvelle conception : couplage avec une cible ISOL
- Nouvelle géométrie de la chambre d'ionisation
- Nouvelle géométrie d'extraction
- Ajout de champs magnétique axial*

Lasers **Objectifs:**

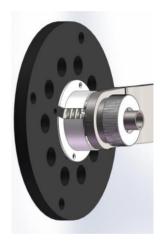
- > Optimisation des performances de la source IRENA
- > Couplage avec la source Laser :
 - o Gain en efficacité d'ionisation et sélectivité
 - o Nouvelles pistes pour la production des éléments réfractaires

Mise en évidence de la nécessité du champs magnétique axial

Feuille de route pour le projet IRENA3

Evaluation par le CODEC des besoins RH et Financiers (octobre 2023)

- Soutien technique / financier laboratoire (10 k€)
- Etape essentielle pour la poursuite du financement par l'IN2P3
- WP dans le AC ISOLDE/IJCLab

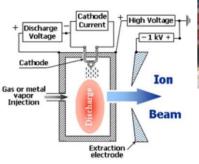

Tâches à faire 2023-2025 :

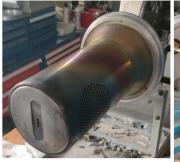
- Revue mécanique de la conception (en cours)
- Qualification et mesures thermiques du système cathode-anode sur le nouveau banc thermique des ECS
- Commissioning et mesures d'efficacités sur un séparateur d'isotopes hors-ligne (fin 2024)
- Si tests hors-ligne concluants → Tests en ligne

Demande 2024 IN2P3: 15 k€

- Modification du prototype et mise à niveau pour les tests hors-ligne : 13,5 k€
- Frais de de missions pour les tests hors-ligne à ISOLDE : 1,5 k€

Projet Source d'ions MK-B



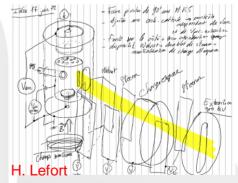

Principe : Ionisation par impact électronique (famille des Nier-Bernas)

Caractéristiques des Nier-Bernas :

- Ionise la plupart des éléments
- Faible émittance
- Faible dispersion en énergie du faisceaux
- Fort courant (mA)
- Efficacité d'ionisation ~ qq pourcent (ionisation + injection + extraction)

Source Nier-Bernas à IRMA et SIDONIE

Objectifs: adaptation de la source Nier-Bernas à la technique ISOL → ECS ISOLDE (WP dans le AC ISOLDE/IJCLab)


- → Four-cible + Tube transfert + Source d'ions
- → Extraction à 1 degré de liberté (habituellement 4)

Budget 2023 IN2P3 : 5 k€

Test de preuve de concept sur SIDONIE : Go/No Go (hybridation)

Demande 2024 IN2P3 : 0 k€ Demande 2025 IN2P3 : 27 k€

Production du prototype des tests hors-ligne à ISOLDE fin 2026-2027

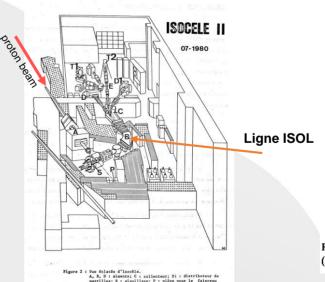
Source d'ions Near-Bernas pour le projet NEWGAIN (III)

Contexte: un projet pour répondre à une idée de physique de David Verney présentée au workshop « physique avec les ions lourds de SPIRAL2 au Ganil » en décembre 2022.

→ Comment exploiter au mieux les intensités des faisceaux d'ions lourds de NEWGAIN ?

Exemple de réactions de transfert attendues à Newgain :

²³⁸U on ²³⁸U @7MeV/A: power in target 16.66 kW (10 pμA)


¹²⁴Sn on ²³⁸U @7MeV/A: power in target 8.68 kW (10 pµA)

→ Comment dissiper toute l'intensité du faisceau dans la cible afin d'explorer tous les canaux de réaction ?

Une branche technologique ISOL déjà utilisée à ORSAY!

ECS Nier-Bernas à ISOCELE

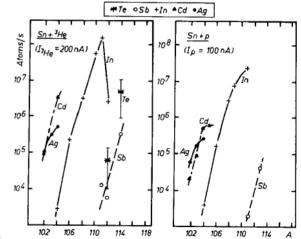
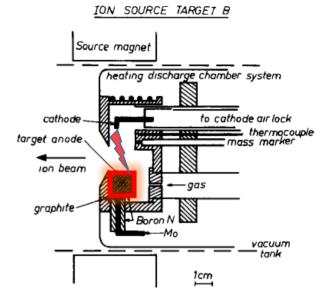


Fig 9 Yields of different elements from a molten Sn target (a) proton beam, (b) ³He beam

Source d'ions Near-Bernas pour le projet NEWGAIN



ECS Nier-Bernas à ISOCELE

ION SOURCE TARGET A Source magnet heating discharge chamber system to cathode air lock cathode thermocouple target mass marker ion beam to heating system vacuum 1cm

Fig 1 Schematic view of target-ion-source systems

A - target behind the arc, B - target under the arc

Source d'ions Nier-Bernas avec des cibles autoconsommées proposées pour une branche ISOL dans NEWGAIN

Comment désorber ? : faisceaux lasers, Intensité de la décharge d'arc,...

Pour quand: faisceaux d'ions lourds de NEWGAIN attendus en 2030

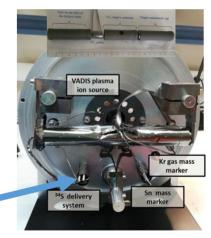
Etat actuel: phase d'avant projet et identification des partenaires et le texte ébauche figure déjà dans la fiche projet R&D ECS.

Projet GeS

Objectif scientifique et technique du projet

- Accélérer du relâchement du ⁸⁴Ge et le produire sous forme sulfurée
- Produire des faisceaux de GeS par voie solide
- Optimiser le protocole de sulfuration et contrôler le flux d'évaporation du réactif « S »
- Optimiser le schéma thermique du l'évaporateur du soufre

Financement 2023 IN2P3:8 k€


- Mise à niveau C&C et mise en service Banc thermique : 5 k€ (tâche compromise)
- Préparation des tests thermiques en 2024 : 3 k€ (tâche compromise)

Demande 2024 IN2P3: 19 k€

Production du prototype pour les tests hors-ligne en 2025

Evaporateur soufre

ECS-FEBIAD

Conclusion

- Accord de collaboration ISOLDE/IJCLab (5 ans) pour les faisceaux et ECS ISOL (signatures en cours)
- Nouveau plateau R&T sources d'ions ISOL au Bat102 mais en attente du reste du matériel et équipements bloqués au bat109 depuis octobre 2022.
- Tâches compromises : Matériel de R&D payé par les SE « projets R&D » toujours bloqué dans le Bat109 depuis octobre 2022.

Projet	Demande 2024
R&D ECS / IRENA	15 k€
ECS-Nouveaux faisceaux / GeS	19 k€
Total	34 k€