

AGATA physics campaign at LNL

Magda Zielińska, CEA Saclay

INTRANS Workshop, Orsay, January 22-25, 2024

- 180 segmented crystals (60 triple units)
- 362 kg of Ge
- 82% solid angle
- counting rate: 50 kHz per Ge crystal
- angular resolution: ~1°
- efficiency: 35% (M_{γ} =1), 20% (M_{γ} =30)
- Peak/Total: ~40-50%
- large inner radius to accommodate ancillary devices

http://www.agata.org

S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2012).

Tracking arrays

designed to maximize efficiency and peak-to-total ratio of high-resolution γ -ray detector arrays

Aims:

- Maximizing the active solid angle without compromising signal/noise ratio
- Improving the energy resolution in all experimental conditions, even at high emission velocities
- Maximizing the detector performance, even in conditions of heavy duty with radiation damage

Compton suppressed

Tracking ingredients

The AGATA timeline

OF SCIENCE A

The AGATA timeline

AGATA installation at LNL

Two different configurations

Nuclear Inst. and Methods in Physics Research, A 1049 (2023) 168040

M. Zielińska, INTRANS Workshop, Orsay, January 22-25, 2024

Complementary detectors

2022-2024 campaign: timeline and experimental constraints

- stable beams from the Tandem-ALPI-PIAVE complex
- ancillaries compatible with PRISMA

PAC meetings at LNL

February 21-23, 2022 TAP beams

28 proposals submitted

- **10** (+3 commissioning) priority A
- **5** priority B

24 proposals submitted

- 6 priority A
- **10** priority B

July 10-12, 2023 TANDEM only beams

15 proposals submitted

• 8 priority A

• **3** priority B

January 22-24, 2024	
TAP beams	

18 proposals submitted

April 2022-June 2023: 22 experiments – 9 months of beam time for AGATA - 80% beam time (without beam preparation)

October-December 2023: 7 experiments - 90% TAP beam time (without beam preparation)

Accepted proposals (priority A + scheduled priority B)

- Experiments involving PRISMA constitute almost one half of the total (plot includes those that use DANTE or LaBr together with PRISMA)
- Good balance between spectroscopy, lifetime measurements (plunger and DSAM), and Coulomb excitation/inelastic scattering; reaction mechanism studies important
- Good representation of most countries of the AGATA collaboration among the spokespersons, with a fair participation of other countries

Physics cases – accepted projects

Quadrupole shapes and shape coexistence Reaction mechanism studies Shape coexistence and shape isomers related to mp-mh excitations across Z=40 (Coulomb excitation of ⁹⁶Zr) and Z=50 (lifetimes in ^{110,112}Sn, ¹⁰⁸Cd, Coulomb N=126 Quadrupole shapes excitation of ¹¹⁰Cd) of neutron-rich Os nuclei from lifetime measurements Z=50 Shape coexistence in ⁶⁰Fe, ⁶⁰Zn (lifetime measurements) and ⁷⁴Se, N=82 mp-mh excitations across N,Z=20: lifetimes ⁶⁰Ni (Coulomb excitation) of intruder states in ³⁷S and ³⁴Si, lifetimes in neutron-rich Mg and Ne nuclei 7 = 28Z=20 **Reaction mechanism studies:** Fusion cross section in the nb range for astrophysical scenarios (test with ¹²C+³⁰Si); fusion hindrance in the ¹²C + ²⁴Mg system **√**=28 Search for dipole oscillations due to Cooper-pair tunnelling in 2n transfer (⁶⁰Ni+¹¹⁶Sn)

Probing nucleon-nucleon correlations (⁴⁸Ca+²⁰⁸Pb)

M. Zielińska, INTRANS Workshop, Orsay, January 22-25, 2024

Physics cases – accepted projects Collectivity close to closed shells Octupole correlations Spectroscopy of **Fundamental symmetries and astrophysics** octupole structures in Z=82 ^{232,234}Pu and ²²⁴⁻²²⁸U **High-spin states** High-spin structures in ^{136,137}Nd populated via MNT 126 Octupole collectivity in ⁹⁶Zr Lifetime measurements in the studied via inelastic proton scattering vicinity of ¹³²Sn and ²⁰⁸Pb: precision tests of LSSM Isospin mixing in ⁷²Kr N=82 Spectroscopy of nuclei around ⁷⁸Ni Precision tests of LSSM calculations from lifetime measurements around ⁶⁸Ni and in ⁵⁶Ni Z=28 N=50 Z=20 shell-model descriptions around ⁴⁸Ca: **lifetimes of** heavy Ar isotopes, Coulomb excitation of ⁴⁴Ca 'N=28 Superallowed β Decay of ¹⁰C Lifetime of the 6.8-MeV state in ¹⁵O for astrophysical reaction rates

First experiment of the campaign: properties of intruder states in ³⁷S

³⁹Ar

2358

1518

 $5/2^{-1}$

3/2-

 $7/2^{-1}$

 $7/2^{-1}$ 3/2

1267

 $1f_{7/2}$

 $2s_{1/2}$

 $1d_{5/2}$

- Intruder 2p-1h and 3p-2h states • appearing in N=21 ³⁹Ar and ³⁷S
- ³⁹Ar well described by state-of-the-art ٠ SM calculations, but a strong branch from the 3p-2h 7/2- state in ³⁷S to the first excited state not reproduced
- Mixing of normal and intruder states? Lifetime measurement to quantify it

 $1/2^{+}$

3/2+

Analysis and slide

courtesy: L. Zago, LNL

M. Zielińska, INTRANS Workshop, Orsay, January 22-25, 2024

EXP_001 (LNL PAC 22.07)

d

26th May – 3rd June 2022

р

Two targets on a regular target holder: $1 CD_2 + 30^{197}Au$ and $0.3 CD_2$ for DSAM only measurements

> Two targets on the Cologne plunger $0.5 CD_2 + 4^{197}Au$ $0.5 CD_2 + 6^{197}Au$ all facing a ¹⁸¹Ta stopper. 8 plunger distances, about 1 day/distance

Plunger

Analysis and slide courtesy: L. Zago, LNL

11 ATC Full traces written on disk: ~31 TB/7 days No trigger condition applied in data taking.

7x8 segmentation Angular range covered: **124°-161°** $(\Delta \Omega = 17\%)$ Low energy protons near the detection threshold (~500 keV).

First results: spectroscopy of ³⁷**S**

Analysis and slide courtesy: L. Zago, LNL

751

- can be pulled apart due to excitation energy reconstruction.
- Statistics is fairly low for the intruder states, but the 2D matrix is very clean.

2023

646

This work

First results: lifetimes in ³⁷S

Analysis and slide courtesy: L. Zago, LNL

- Very short lifetime of the single-particle 2638-keV state (no lineshape effect) – limit on a lifetime
- Longer lifetime of the intruder 1992-keV state (tens of fs) can be determined via DSAM analysis

Shape evolution and coexistence in Se isotopes

J.P. Delaroche et. Al., HFB-D1S GCM(GOA)

- Oblate ground-state and shape coexistence predicted for ⁶⁸⁻⁷²Se
- Moments of inertia suggest different shapes of the yrast band in ⁶⁸Se and ⁷⁴Se, and appearance of coexisting structures at very low energy in ^{70,72}Se
- alternative IBM-based interpretation: weakly deformed vibrational states (ground-state band, 0⁺₂) coexisting with well deformed states (0⁺₃, 2⁺₄)

E McCutchan et al., PRC 87, 014307 (2013)

Coulomb excitation of ⁷⁴Se with AGATA + SPIDER

Data taking:

October 27-31, 2022

Coulomb excitation of ⁷⁴Se – results

 3^{-}

A very rich level scheme populated:

- ground-state band up to spin 8⁺ •
- band built on the 0^+_2 state up to spin 6^+ •
- presumed deformed structure $(0_{3}^{+}, 2_{4}^{+})$ •
- 3⁻ octupole state •
- multiple other states of uncertain spin at excitation energies over 2 MeV •
- additional information on weaker transitions or doublets from gamma-gamma coincidences •

2284

1716

Coulomb excitation of 74Se – results

- Biggest surprise: an intense 1512 keV line that has never been seen before in gamma-ray spectroscopy of ⁷⁴Se
- It is likely to originate from the 2146-keV state observed previously only in particle spectroscopy following two-neutron transfer
- Its strong population in the present data suggests a 0⁺ spin-parity: to be verified in a complementary two-neutron transfer experiment

FUTURE: campaign at zero degrees

AGATA Campaign at LNL

Third Pre-PAC Workshop and

Zero-Degree Campaign Workshop

LNL, April 19th-21st, 2023

Meeting devoted to the discussion of the future campaign involving AGATA at zero degrees → preliminary information about **DayOne SPES beams**

List of possible first SPES beams:

Primary target	Beam	Intensity (pps)	Max energy (MeV/A)
TiC	43Sc	2,40E+07	10
TiC	44Sc	2,25E+08	10
TiC	42K	3,70E+07	10
UCx	130Sn	3,95E+06	10
UCx	132Sn	7,70E+05	10
UCx	132Te	2,11E+07	10
UCx	132Sb	9,50E+05	10
UCx	134Te	1,50E+04	10
UCx	94Rb	6,80E+06	10
UCx	75Ga	1,10E+05	10

The intensities are to be considered at the target position.

Details of the call for Lols

- stable beams from the Tandem-ALPI-PIAVE complex or first SPES beams
- complementary set-ups compatible with AGATA at zero degrees: NEDA, PARIS, GRIT, TRACE, gas/cryogenic targets (SUGAR, CTADIR, CHYMENE) but also some that are used in the present campaign: EUCLIDES, SPIDER, DANTE
- overwhelming response from the community:
 42 "physics" Lols + 4 umbrella proposals

- large majority (33) with at least one Italian spokesperson; percentage of Italian co-spokespersons consistent with earlier AGATA Pre-PACs at LNL
- particularly strong representation of France and Poland
- co-spokespersons from outside the AGATA collaboration: Mexico, US, Korea, Brazil

Lols for ZD campaign - statistics

- there is no "preferred" set-up (in contrast to the PRISMA campaign)
- fewer plunger measurements, fair interest in studies using gas/cryogenic targets
- enthusiastic reception of SPES beams

Lols for ZD campaign - statistics

- more spectroscopy, fewer transition probabilities and reaction mechanism studies
- renewed interest in reactions relevant for astrophysics
- return of high-spin physics

Physics cases for the ZD campaign

Summary and outlook

•A rich and intense experimental campaign thanks to a overwhelming response from the community (26 experiments performed so far)

•Recent extension of the campaign until end of 2026

•Strong community intending to perform measurements in the zero-degree configuration; timeline of the change under discussion.

•Exciting results from the performed experiments to come!

Big thanks to the AGATA collaboration, GAMMA group and LNL/PD/Mi technical staff

...and all the youngsters behind it!

