

Recent highlights and future prospects for GRETINA and GRETA

Paul Fallon

Nuclear Science Division, Lawrence Berkeley National Laboratory

Outline

- Introduction
 - Why we need GRETA
- The GRETINA Era
 - First Experiments at FRIB
- The GRETA ERA
 - Overview and Status

GRETA: A premier γ-ray tracking detector for FRIB

<u>The Facility for Rare Isotope Beams (FRIB) is a</u> <u>world leading accelerator facility</u> to understand the properties of exotic nuclei and how the elements are synthesized.

<u>GRETA will be a key instrument at FRIB</u> capable of reconstructing the energy and threedimensional position of γ -ray interactions.

Its <u>design provides the unprecedented</u> <u>performance (combination of full solid angle</u> coverage and high efficiency, excellent energy and position resolution, and good background rejection) <u>needed to carry out a large fraction of</u> <u>the nuclear science programs at FRIB.</u>

FRIB at Michigan State University

The GRETA Physics Case Mirrors that of FRIB

... or why we need a GRETA (a high-resolution γ -ray array)

Nuclear Structure	Nuclear Astrophysics	Tests of Fundamental Symmetries	Applications of Isotopes
Intellectual challenges from NRC Decadal Study 2013			
How does subatomic matter organize itself and	How did visible matter	Are fundamental interac- tions that are basic to the	How can the knowledge
 Shell structure ✓ Superheavies ✓ Skins ✓ Pairing Symmetries ✓ Equation of state Limits of stability ✓ Weakly bound nuclei ✓ Mass surface ✓ 	1. Shell structure \checkmark 6. Equation of state 7. r-Process \checkmark 8. ¹⁵ O(α , γ) 9. ⁵⁹ Fe s-process 13. Limits of stability \checkmark 15. Mass surface 16. rp-Process 17. Weak interactions \checkmark	 12. Atomic electric ✓ dipole moment 15. Mass surface 17. Weak interactions 	10. Medical11. Stewardship ✓
		✓ indicate topics where GRETA will be used.	

17 Benchmark programs introduced by the NSAC Rare-Isotope beam task force (2007).

GRETA: A Major instrument at FRIB

GRETA will be a major instrument at FRIB and provides the sensitivity to enable a broad range of physics with both fast-fragmentation and reaccelerated beams

Designed (and expected) to be used on multiple beam lines

GRETA: A Major instrument at FRIB

γ -ray detection plays a central role in nuclear physics

- The spectrum of excited states is key to understanding nuclear structure.
- Of the many experimental tools and techniques developed to study nuclei, <u>high-resolution</u> γ-ray spectroscopy has proven to be one of the most powerful
- Advances in detector technology extend science reach
- GRETA achieves large gains because it provides a detector technology to create a "Ge-shell"
- Maximizes and Optimizes
 - Efficiency, Energy Resolution, Peakto-Total

Gamma-Ray Energy Tracking Array

GRETINA/GRETA concept for a shell of closely packed Ge crystals

- Combines (120) highly segmented, hyper-pure germanium crystals with advanced digital signal processing techniques
- Identify the position and energy of γ-ray interaction points within a compact "shell" of detectors
- Track γ-ray path both within and between detector elements, using the angleenergy relation of the Compton scattering process

Maximizes and Optimizes

• Efficiency, Energy Resolution, Peak-to-Total

Gamma-Ray Energy Tracking Array

GRETINA/GRETA concept for a shell of closely packed Ge crystals I-Y.Lee

- Combines (120) highly segmented, hyper-pure germanium crystals with advanced digital signal processing techniques
- Identify the position and energy of γ-ray interaction points within a compact "shell" of detectors
- Track γ-ray path both within and between detector elements, using the angleenergy relation of the Compton scattering process

Maximizes and Optimizes

• Efficiency, Energy Resolution, Peak-to-Total

GRETINA – first stage to get to GRETA

Gamma-Ray Energy Tracking In-beam Nuclear Array

Between 2003 and 2011, the US low-energy nuclear physics community constructed GRETINA, a 1π tracking detector employing the same segmented detector and signal decomposition technology as GRETA.

GRETINA was a \$20M project funded by US DOE-Nuclear Physics Office

 Covered ~¼ of a sphere with 7 Quad Detector Modules

GRETINA science operations at MSU and ANL have demonstrated the technology and scientific impact of a γ -ray tracking array.

Added Quad Detector Modules – total of 12 (+ 1 spare)

Outline

- Introduction
 - Why we need GRETA
- The GRETINA Era
 - First Experiments at FRIB
- The GRETA ERA
 - Overview and Status

GRETINA Science Campaigns

Campaigns

NSCL I: August 2012 - June 2013 24 experiments ~3500 hours

ATLAS I: March 2014 - June 2015 18 experiments ~2700 hours

NSCL II: October 2015 - July 2017 24 experiments ~3600 hours

ATLAS II: August 2017 – April 2019 16 experiments ~2900 hours.

NSCL III: June 2019 – August 2020 11 experiments ~1500 hours.

ANL III: February 2021 – May 2022 26 experiments ~3000 hours

FRIB I: July 2022 – May 2024

GRETINA has successfully demonstrated the science reach and impact of a γ -ray tracking array

GRETINA uses ~50% of available running time

GRETINA at NSCL

62 Experiments in 3 Campaigns

Collectivity

- Shape coexistence in N=20, 28, 40 Island of Inversion
- Shape changes and collectivity along the Ni isotopic chain, at N=Z...
- Transition rates and halo properties
- Electromagnetic transition rates to benchmark ab-initio calculations or large-scale shell-model approaches

Nuclear Astrophysics

- Precise energy measurements of resonances important for (p,γ) captures in the rp process
 - Angle integrated measurement of (d,n) and (d,p) transfer reactions +mirror symmetry to constrain p capture rates for nucleosynthesis processes
 - Constraining EC rates with (t,³He+γ) CEX reactions to understand core-collapse supernovae

Nuclear Shell Evolution

- Single-particle structure at *N=20*, *N=*28, *N=*40 from direct reactions
- Shell evolution along the Ca, Ni, Zn, ... isotopic chains from direct reactions
- Probing core excitations and shell-model cores with different methods

Developments

- Commissioning of GRETINA+S800
- Absolute γ-ray efficiency of GRETINA at 6MeV
- Beam for the EBSS 2017

Z=20

Z=8

GRETINA at ANL (3rd campaign)

- Deformation near N=Z=40: low-spin non-yrast states in ⁷⁸Sr
- Electromagnetic transition rates in ²²O and ²³F
- Isospin symmetry breaking in the A=63 mirror nuclei
- Study of high-spin states of neutron-rich nuclei near N=40 following fusion evaporation
- First study of higher-lying states in ^{25,26}Ne via fusion evaporation
- Experimental verification of the near-threshold state collectivization effect
- Testing ab-initio calculations in neutron-rich ¹⁶C via lifetime measurement
- Coherent contribution of protons and neutrons to octupole collectivity: lifetime measurement of the 3⁻ octupole state in ⁶⁴Ge

- Testing the state-of-the-art: Coulomb excitation of ¹⁵⁴Sm and ¹⁶⁶Er
- Octupole strength in ²²⁵Ra: Providing structure data for an EDM search
- Shape and structure of ¹³⁰Te relevant to neutrinoless double-beta decay
- Triaxiality and shape evolution in the Ge isotopes
- Structure at a crossroads: Coulomb excitation of neutron-rich Nd and Ce
- Precision measurement of the Q(2⁺) in ¹²C: testing state-of-the-art ab-initio theories
- Coulomb excitation of ¹⁴C with GRETINA
- Entry-distribution measurements and quasi-continuum extraction with GRETINA
- ²⁵Al(p,g)²⁶Si reaction and the implications for the observation of cosmic gamma rays from classical nova explosions
- Probing the underlying explosion mechanisms of core collapse supernovae: Spectroscopy of ⁴⁶Cr
- Nucleosynthesis and energy generation in type-I X-ray bursts: γ -ray spectroscopy of ⁴⁹Mn
- ${}^{58}Ni({}^{3}He,t){}^{58}Cu$ measurements with GODDESS to constrain astrophysical rate of ${}^{57}Ni(p,\gamma){}^{58}Cu$
- Benchmarking neutron capture on weak r-process nuclei: the $(d, p\gamma)$ reaction with N=48 ⁸²Se beam
- ²²Na production in novae: addressing the discrepancies in ²²Na(p, γ)²³Mg with GODDESS
- Measuring ${}^{39}K({}^{3}He,a){}^{38}K$ with GODDESS to search for energy levels in ${}^{38}K$ important for the ${}^{37}Ar(p,\gamma){}^{38}K$ reaction rate
- Precision energy measurement of astrophysical states in ²⁴Mg
- Constraining the properties of resonant states in the ${}^{30}P(p,\gamma){}^{31}S$ reaction

The Experimental Setup at NSCL and FRIB

GRETINA + S800 (+ LH₂ target, + LENDA, ...)

Target Degrader

The Experimental Setup at ANL

Fragment Mass Analyzer (FMA)

ORRUBA segmented silicon

CHICO 2 - PPAC

Integrated Cologne-Argonne Plunger Setup (ICAP)

The Experimental Setup at ANL

Fragment Mass Analyzer

Coupling to other devices is essential to address the broad science goals and achieve the required sensitivity

rated Cologne-Argonne Jer Setup (ICAP)

ORRUBA segmented silicon

"S3" segmented silicon detector

GRETINA Science Campaigns

Campaigns

NSCL I: August 2012 - June 2013 24 experiments ~3500 hours

ATLAS I: March 2014 - June 2015 18 experiments ~2700 hours

NSCL II: October 2015 - July 2017 24 experiments ~3600 hours

ATLAS II: August 2017 – April 2019 16 experiments ~2900 hours.

NSCL III: June 2019 – August 2020 11 experiments ~1500 hours.

ANL III: February 2021 – May 2022 26 experiments ~3000 hours

GRETINA has successfully demonstrated the science reach and impact of a γ -ray tracking array

The Experimental Setup at NSCL and FRIB (Fast Beams) Reactions induced by ²⁰Ne GRETINA + S800 (+ LH₂ target, + LENDA, ...) inergy los Identification and beam transport . Stopped beam experiments Fast beam experiments Reaction product Secondary reaction identification S800 spectrograph ^{20}Ne ^{22}Mg • Reaction product identification 35 -30 Identification and beam transport 25 °02 × 15 × 10 -5. Time-of-flight difference NA and GRETA | INTRANS 2024

First GRETINA @ FRIB Campaign

14 Experiments Approved in 2 FRIB PACs

Collectivity

- Quadrupole Collectivity at the Boundaries of the *N*=40 Island of Inversion
- Evolution and isospin-dependence of quadrupole collectivity in the heaviest *N=Z*
- Measuring proton and neutron matrix elements for the transition in the N=28 nucleus ⁴²Si
- Search for the Isovector GMR via the ⁹⁰Zr(¹⁰Be,¹⁰B[0⁺,T=1]) reaction

GRETINA and GRETA | INTRANS 2024

• Collectivity at N=27

Z=20

Z=8

Nuclear Shell Evolution

- Single-neutron structure at the heart of the *N=28* island of inversion
- Halo formation in neutron-rich carbon isotopes
- Understanding shape and configuration
 coexistence at N=28
- Shape coexistence at the heart of the N=40 island of inversion
- The structure of light tin isotopes

Nuclear Astrophysics

- Informing the i process: constraining the As/Ge abundance ratio in a metal poor star via ⁷⁵Ga(d,pγ)⁷⁶Ga
- Angle-integrated measurement of the d(²⁵Al,nγ)²⁶Si transfer reaction to probe resonance strengths in
 ²⁵Al(p,γ)²⁶Si relevant for ²⁶Al production in classical novae
- Constraining the Ni-Cu cycle in X-ray bursts and Core Collapse Supernovae: Spectroscopy of ⁶⁰Zn
- ⁸⁰Ge(d,pγ): Informing weak r-process neutron capture 20

Led by FRIB, U. Surrey and FSU (Gade, Tostevin, Weidenhoever et al.) with LBNL, LLNL, and Ursinus College

Shell Evolution at N=28

Testing Model Descriptions of ⁴²Si

- Motivation theory has been unable to describe
 ⁴²Si and different models disagree with each other
- Approach measure ⁴⁴S(-2p)⁴²Si reaction
- Initial beam time did not go to plan had to move to Plan B, namely ⁴²S(-2p)⁴⁰Si reaction

PHYSICAL REVIEW LETTERS 122, 222501 (2019)

Is the Structure of ⁴²Si Understood?

A. Gade,^{1,2} B. A. Brown,^{1,2} J. A. Tostevin,³ D. Bazin,^{1,2} P. C. Bender,^{1,*} C. M. Campbell,⁴ H. L. Crawford,⁴ B. Elman,^{1,2} K. W. Kemper,⁵ B. Longfellow,^{1,2} E. Lunderberg,^{1,2} D. Rhodes,^{1,2} and D. Weisshaar¹
 ¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
 ²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
 ³Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
 ⁴Nuclear Science Division, Lawrence Berkeley National Laboratory, California 94720, USA
 ⁵Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

Led by FRIB, U. Surrey and FSU (Gade, Tostevin, Weidenhoever et al.) with LBNL, LLNL, and Ursinus College

Shell Evolution at N=28

Testing Model Descriptions of ⁴²Si

- Motivation theory has been unable to describe
 ⁴²Si and different models disagree with each other
- Approach measure ⁴⁴S(-2p)⁴²Si reaction
- Initial beam time did not go to plan had to move to Plan B, namely ⁴²S(-2p)⁴⁰Si reaction
- Very rich data set
 - Interesting discrepancy between two different shell-model effective interactions and IM-SRG
 - Similar to the case of ⁴²Si where obviously the drivers of shell evolution are not understood

and MSU

Shape Coexistence in the N=40 Island of Inversion

Identifying the Excited 0⁺ Band-head in ⁶²Cr

- Momentum distributions of ⁶²Cr in ⁹Be(⁶⁴Fe,⁶²Cr+γ) are sensitive to the final state total angular momenta
- 4_1^+ and 6_1^+ states prove approach

and MSU

3180

1281

Shape Coexistence in the N=40 Island of Inversion

and MSU

Shape Coexistence in the N=40 Island of Inversion

Shape Coexistence in the *N*=40 Island of Inversion

Identifying the Excited 0⁺ Band-head in ⁶²Cr

- LNPS shell model effective interaction describes well the proposed level scheme
- DNO-SM study shows that triaxiality degree of freedom is important for γ band on top of the 2⁺₂ and the band on top of 0⁺₂ 2⁺ 2⁺ 2⁺ 2320

Led by U. Tenn. (Jones et al.) and FRIB with LBNL, LLNL, ORNL, and Rutgers.

Shell Evolution Towards ¹⁰¹Sn

The Structure of Light Sn Isotopes

The energy splitting between the ground and first excited states in the light, odd-mass tin isotopes is small, between 151 keV (¹⁰⁷Sn) and 200 keV (¹⁰⁵Sn). It is expected that the order of these states in ¹⁰¹Sn will be switched, with respect to ^{103, 105, 107}Sn.

One way to make spin and parity assignments for these states is to measure the momentum distributions in coincidence with γ rays depopulating the first excited state following a knockout reaction \rightarrow allows to distinguish the involved *g* and *d* neutron orbitals.

1n knockout ^{106,104,102}Sn

Online particle identification gated on ¹⁰⁶Sn beam and γ -ray spectrum

Spectroscopy of ⁶⁰Zn

Constraining the Ni-Cu cycle in X-ray bursts and Core Collapse Supernovae

The ${}^{59}Cu(p,\gamma)$ reaction is expected to strongly influence the shape of Type-I X-ray burst light curves.

This process was studied via (d,n) transfer at FRIB using GRETINA, LENDA and the S800 spectrometer

Identify γ decays from proton-unbound states in 60 Zn and measuring neutron angular distributions to constrain resonance strengths in the astrophysical 59 Cu(p, γ) reaction.

Outline

- Introduction
 - Why we need GRETA
- The GRETINA Era
 - First Experiments at FRIB
- The GRETA ERA
 - Overview and Status

GRETA: A 4π Gamma-Ray Energy Tracking Array

The GRETA Project

GRETA builds on the existing GRETINA array to subtend the full 4π coverage of γ -ray tracking detectors.

- 18 Quad modules, to be combined with 12 GRETINA modules for a total of 30
- <u>Full mechanical structure</u> for a 30 module, close-packed array, covering 80% of solid angle
 - Removable forward and rear detector rings
 - Rotation and translation capabilities
- Electronics to instrument all 30 Quad modules
 - Detector-mounted digitizer modules with continuous streaming of waveforms to FPGAbased signal filter boards
 - New trigger, timing and controls systems
- <u>Computing cluster to support full array</u>
 - Real-time signal decomposition up to total throughput of 480k decompositions/s
 - High-speed local network
 - Large local RAID storage

GRETA Project Phased for Early Science Operation at FRIB

Technical Progress

- Working towards project completion
- Technical systems (mechanical, electronics, computing) will be done in next 2-4 months
- System Assembly and integration phase started at LBNL Bldg 88
- CD-4A (Early 2025) with delivery of GRETA phase-1 to FRIB in Spring 2025.

Hemispheres – Fabrication Steps

Support Frame and Arm Installation

Support Frame and Arm Installation

Detectors at FRIB

All 18 Ordered ③

11 delivered

Expect last Quad detector to be delivered end of CY 2025

GRETA Signal Chain

Continuous
 100MHz
 digitization of 40
 preamplifier
 signals per crystal

Electronics (ADC) are on the Detectors, Digitized signals sent to Signal Filter Boards

GRETA Signal Chain

GRETA Signal Chain

GRETA Electronics Systems

Digitize at the Detector, fiber-based network carries data and controls

GRETA Computing Systems

Pipeline-Based Network Architecture Enables Cutting-Edge Performance

GRETA Computing Systems

Pipeline-Based Network Architecture Enables Cutting-Edge Performance

100G

- 300TB full SSD storage array ٠ improves ability to sort online, move data quickly off the cache to the DTN
- High-performance computing . cluster enables in-line compression and will support 500k signal decomposition calculations per second

43

GRETA Initial Operations (starting 2025)

- Reaccelerated beams
 - GRETA at ReA beam Line
- Fast Beams
 - GRETA frame is not designed for S3 vault (S800) and HRS is under construction
 - Plan to modify GRETINA frame to be able to have up to ~20 QUADS in front of the S800, with the new GRETA electronics and computing and cooling (to maximize HPGe coverage and science opportunities)

Summary

- GRETINA has completed over 100 experiments during the 6 scientific campaigns at NSCL and ATLAS; the 7th campaign, and the first FRIB campaign is ongoing
- With over 100 publications since the start of operations 12 years ago, the scientific impact of GRETINA is unquestionable
- GRETA builds on the success of GRETINA with updated electronics and computing systems to enhance performance, and a full 120 HPGe crystals covering ~80% of the 4π solid angle
- GRETA is planned for delivery to FRIB in 2025 for first operations after integration with the GRETINA Quad detector modules

Thank You

And a special thanks to A. Gade, K. Jones, and G. Lotay for sharing material from their experiments!