

The Oslo Scintillator Array

The OSCAR Array

Funded by The Research Council of Norway

Vetle W. Ingeberg

INTRANS Workshop 22-25 January 2024

Outline

- The Oslo Cyclotron Laboratory (OCL)
- The OSCAR array
 - The LaBr₃:Ce detectors
 - Data Acquisition System
 - Characteristics
- Physics Results
 - Statistical nuclear properties
 - Nuclear astrophysics
 - Fission properties

The Oslo Cyclotron Laboratory (OCL)

- Basement of the Department of Physics, University of Oslo
- Scientific programme:
 - Statistical properties of nuclei
 - Nuclear structure
 - Nuclear astrophysics
 - Fission
 - Nuclear chemistry
 - Radiation biology and medical applications
 - Material science and radiation hardening of electronics

A. Görgen *et al.*, Eur. Phys. J Plus **136**, 181 (2021)

The Oslo Cyclotron Laboratory (OCL)

≈ 2500 hours of beam/year

The CACTUS array

- Commission ≈ 1990
- 28 large Nal:TI detectors
 - 5x5-inch detectors
- Collimated detectors
- Analog electrons
- Energy resolution ≈ 7% (1332 keV)
- Time resolution ≈ 17 ns
- Total efficiency 15.2% at 1332 keV
 - Full energy efficiency≈4.5%,1332 keV

The OSCAR array

- Commissioned 2018
- Largest LaBr₃:Ce array
- Budget ≈ 23.3 MNOK (≈ 2.3 M€)
- 30 large volume LaBr3:Ce detectors
 - 3.5x8-inch detectors
- National Research Infrastructure
- Digital Data Acquisition
- Improves resolution by
 - Energy ≈ 3-5
 - Time > 10x
- Efficiency > 3x

The OSCAR detectors

- Built at OCL
- Design based on the HECTOR+ array
- Large volume LaBr₃:Ce
 - BrilianCe 380 from Saint-Gobain Crystals¹
- Redesigned housing with thin Al window
- Hammamatsu R10233-100 PMT
 - Maximum gain 2.5x10⁴
 - Minimum quantum efficiency 41%
- Active voltage dividers `LABRVD` designed by the Milano Group

The OSCAR frame

- Aluminum frame
- Approximate isotropic
- Three different detector distances
 - 16.3 cm: 57% of 4π
 - 22.0 cm: 30% of 4π
 - 42.0 cm: 8.4% of 4π
- Designed by Jan Mierzejewski, Component3D, Poland

OSCAR+SiRi

- Silicon Ring Array SiRi
- Eight trapezoidal assemblies
- Each trapezoid: ΔE-E telescopes
- Covers angles:
 - Forward: 40° to 58°
 - Backwards: 126° to 140°
- ΔE:
 - Eight segments, 2° each
 - Thickness: 130 μm
- E:
 - Single crystal, thickness: 1550 µm
- Designed and manufactured in collaboration with SINTEF MiNaLab, Norway

Data Acquisition System

- Digital system from XIA LLC
- Based around the Pixie-16 modular system
- Single crate:
 - LaBr₃:Ce: 14-bit, 500 MHz (2 + 1 spare)
 - SiRi: 16-bit, 250 MHz (5 + 1 spare)
- Each channel individually triggered
- Storing only gamma events within 500 ns of a particle event
- Virtually no deadtime
- Improves throughput significantly (> 10x)
- Optimized for throughput

UNIVERSITY 22.01.2024 OF OSLO

11

TOF neutron/gamma discrimination

UNIVERSITY 22.01.2024 OF OSLO 15

Geant4 model

- Entire array implemented in Geant4
 - Crystal, housing, PMT
 - Frame and support structure
- Simulated response function for energies between 100 keV and 20 MeV
- Model published in F. Zeiser *et al.*, Nucl. Inst. Meth. Phys. Res. A 985, 164678 (2021)

Geant4 model

17

The Oslo Method

 Measure the Nuclear Level Density and gamma-ray strength function simultaneously

Si ∆E-E

- Important parameters for nuclear reaction calculations
 - Nuclear astrophysics
 - Nuclear reactors
 - Isotope production
- Input for the Oslo Method: Excitation versus gamma energy matrices

Low Energy Enhancement

- First measured with the Oslo Method in ⁵⁶Fe
- Measured to be dipole
- E1/M1 not yet experiementally determined

The Oslo Method – Nuclear Astrophysics

A+1Z

Nuclear Astrophysics

- Elements heavier than iron neutron capture processes
 - s-process
 - i-process
 - r-process
- The Oslo Method:
 - Indirect method to measure neutron capture rates

Figure credit: A. C. Larsen and S. Goriely, Phys. Rev. C 82, 014318 (2010)

The Oslo Method

UNIVERSITY 22.01.2024 OF OSLO

V. W. Ingeberg et al., Phys. Rev. C 106, 054315 (2022)

The Oslo Method

- First Generation Matrix
- Proportional to NLD & gamma transmission coefficients • $P(E_i, E_{\gamma}) \propto \mathcal{T}(E_{\gamma}) \cdot \rho(E_f = E_i - E_{\gamma})$ • $P_{th}(E_x E_{\gamma}) = \frac{\mathcal{T}(E_{\gamma})\rho(E_x - E_{\gamma})}{\sum_{E_{\gamma}=E_{\gamma}^{min}}^{E_x} \mathcal{T}(E_{\gamma})\rho(E_x - E_{\gamma})}$ • $f_{L=1}(E_{\gamma}) = [f_{E1}(E_{\gamma}) + f_{M1}(E_{\gamma})] \approx \frac{\mathcal{T}(E_{\gamma})}{2\pi E_{\gamma}^3}$

The Shape Method

- Model independent method
- Provides external data constrining the slope of Oslo Method data

$$N_D \propto f(E_{\gamma}) E_{\gamma}^3 \sum_{[J_f]} \sum_{J_i=J_f-1}^{J_i=J_f+1} p^{\text{level}}(E_i, J_i) g(E_i, J_i)_{\text{tot}},$$

3

10³

10²

10

Systematic studies of Nd isotopes

- Is there a connection between the LEE and the SM? Deformation?
- NLD & gSF measured for ^{142,144-151}Nd
- First obervation of LEE & SM in same nucleus

Systematic studies of Nd isotopes

Test of Brink-Axel in Sn Isotopes

- Collective modes of excitation can be built on excited levels the same way as for the ground state
- Consequences:
 - No dependence of spin/parity of the GSF
 - No dependency on initial and final excitation energy
- GSF extracted with Oslo Method & Shape Method in ¹²⁰Sn and comparison to (p,p') Coulex data

M. Markova et al., Phys. Rev. Lett. 127, 182501 (2021)

Inverse Kinematics

- The Oslo Method with inverse kinematics
- Radioactive beam
- Low beam rate need high efficiency
- First ever experiment:
 - d(⁶⁶Ni,p)⁶⁷Ni
 - Deuterated polyethylene target
- Important for understanding the weak i-process
- CERN ISOLDE

66Ni(n,g) and the i-process

High ⁶⁶Ni(n, γ) cross section

Low ⁶⁶Ni(n, γ) cross section

31

Inverse Kinematics

Impact of ⁶⁶Ni(n, γ)?

- Nucleosynthesis calculations by A. Choplin, S. Goriely and L. Siess
- One-zone model & multi-zone model
- Consider four scenarios:

	65Ni(n, γ)	66Ni(n, γ)
Case 1	TALYS min	10.7 mb (MACS, this work)
Case 2	TALYS max	10.7 mb (MACS, this work)
Case 3	TALYS max	TALYS min
Case 4	TALYS max	TALYS max

V. W. Ingeberg et al., Phys. Rev. C (in review)

UNIVERSITY

OF OSLO

35

Inverse Kinematics at iThemba LABS

- AFRODITE array
- d(⁸⁶Kr, p)⁸⁷Kr with 2 LaBr₃:Ce detectors
- d(⁸⁴Kr, p)⁸⁵Kr
- d(¹³²Xe, p)¹³³Xe
 - 6 LaBr₃:Ce
- 8 CLOVER detectors
- Particle DE-E detectors

OSCAR as a Polariometer

- What is the nature of the LEE?
 - M1 or E1
- Can use Compton scattering to measure polarization?
- $W(\psi) = b(1 A_0 \cos(2\psi))$
 - $A_0 > 0$: Electric
 - $A_0 < 0$: Magnetic
- Explored in MSc of Johan Emil Larsson

37

OSCAR as a Polariometer

Johan Emil L. Larsen, *"Statistical properties of Mo-96 and Mo-100"*, Master's Thesis, University of Oslo (2022)

The Hoyle State

- Radiative width of the Hoyle State in ¹²C
- Important for the reaction rate of the tripple- α
- Measure particle-y-y coincidences, ${}^{12}C(p,p'\gamma\gamma)$
- Experiment performed in 2019 and 2020

W. Paulsen, "Reassessment of the radiative width of the Hoyle state from gamma ray spectroscopy using OSCAR", Master's thesis (2020)

12C

Physics cases – Fission studies

- Currently building a dedicated fission setup
- Newly developed scintillatorbased fission detectors
- Expected to be commissioned this fall
- Measure excitation dependent
 prompt fission gamma-rays
- TOF to distinguish fission neutrons

T.G. Tornyi *et al.*, Nucl. Inst. and Meth. in Phys. Res. A **738**, 6-12 (2014)

Future Prospects?

Summary

- Large LaBr₃:Ce array
- Excellent efficiency
- Excellent energy & time resolution
- Enables new studies
 - Systematic measurements with the Oslo Method
 - Reactions with low cross section such as (a,p), (a,d), etc.
- Great tool for low yield/rare events

UNIVERSITY 22.01.2024 OF OSLO

Acknowledgement

Frank Bello

Andreas Görgen

Magne Guttormsen

Vetle Wegner Ingeberg

Ann-Cecilie Larsen Kevin W. Li Wanja Paulsen Therese Renstrøm Sunniva Siem Gry M. Tveten Fabio Zeiser

NUCLEAR RESEARCH CENTRE

Technical advisory board

Franco Camera, Pete Jones, Dave Jenkins

