Fingerprint of the tensor interaction in $N=20$ isotones

Vittorio Somà
CEA \& Université Paris-Saclay

Advertisement: recent developments

\odot Ab initio calculations: significant progress in mid-mass nuclei \& heavy closed-shell

- How to extend to extend these approaches to heavy (doubly) open-shell nuclei?
$\xrightarrow{\prime} \rightarrow$ Valence-space (shell model): diagonalisation \rightarrow factorial scaling
$\xrightarrow{\prime} \rightarrow$ Expansion combined with symmetry breaking/restoration \rightarrow polynomial scaling

[Frosini et al. 2022]

PGCM

MBPT

ω [MeV]

Outline

Motivation

© One-neutron transfer reaction ${ }^{36} S(p, d){ }^{35}$ (iThemba LABS)

- Goal: assess variation of spin-orbit splitting in $N=\mathbf{2 0}$ isotones (cf. with known value in ${ }^{40} \mathrm{Ca}$)
" \rightarrow Highlight the effect of tensor interaction

Objectives
$\odot ~ A b$ initio (self-consistent Green's function) calculations along $N=20$ isotonic chain

1) How do they perform, what can we learn?
2) Can we characterise the scheme dependence of non-observables ESPEs?

[^0]\odot Many-body Schrödinger eq. \rightarrow Dyson eq. $\quad g_{\alpha \beta}(\omega)=g_{0 \alpha \beta}(\omega)+\sum_{\gamma \delta} g_{0 \alpha \gamma}(\omega) \Sigma_{\gamma \delta}^{\star}(\omega) g_{\delta \beta}(\omega)$
๑ One-body propagator displays spectral representation
\[

$$
\begin{gathered}
\text { Separation energies } \\
\begin{array}{c}
\varepsilon_{n}^{+}=E_{n}^{A+1}-E_{0}^{A} \\
\varepsilon_{k}^{-}=E_{0}^{A}-E_{k}^{A-1}
\end{array}
\end{gathered}
$$
\]

$$
g_{\alpha \beta}(\omega)=\sum_{n} \frac{\left(\mathcal{X}_{\alpha}^{n}\right)^{*} \mathcal{X}_{\beta}^{n}}{\omega-\varepsilon_{n}^{+}+i \eta}+\sum_{k} \frac{\mathcal{Y}_{\alpha}^{k}\left(\mathcal{Y}_{\beta}^{k}\right)^{*}}{\omega-\varepsilon_{k}^{-}-i \eta}
$$

Transition amplitudes

$$
\begin{aligned}
\mathcal{X}_{\alpha}^{n} & =\left\langle\Psi_{n}^{\mathrm{A}+1}\right| a_{\alpha}^{\dagger}\left|\Psi_{0}^{\mathrm{A}}\right\rangle \\
\mathcal{Y}_{\alpha}^{k} & =\left\langle\Psi_{k}^{\mathrm{A}-1}\right| a_{\alpha}\left|\Psi_{0}^{\mathrm{A}}\right\rangle
\end{aligned}
$$

Spectral function

$$
\mathbf{S}(\omega) \equiv \sum_{n \in \mathcal{H}_{A+1}} \mathbf{S}_{n}^{+} \delta\left(\omega-\varepsilon_{n}^{+}\right)+\sum_{k \in \mathcal{H}_{A-1}} \mathbf{S}_{k}^{-} \delta\left(\omega-\varepsilon_{k}^{-}\right)
$$

Effective single-particle energies (I)

© Many-body observables often difficult to interpret

- E.g. separation energies can not, in general, be used to define a single-nucleon shell structure
$\xrightarrow{\prime \prime} \rightarrow$ Resort to simpler / reduced quantities, e.g. effective single-particle energies (ESPEs)
© Well-defined procedure to compute ESPEs from a correlated wave function [Baranger 1970]
- Moments of the spectral function

$$
\mathbf{M}^{(p)} \equiv \int_{-\infty}^{+\infty} \omega^{p} \mathbf{S}(\omega) d \omega
$$

- First moment define centroid Hamiltonian

$$
\mathbf{M}^{(1)}=\sum_{n \in \mathcal{H}_{A+1}} \mathbf{S}_{n}^{+} \varepsilon_{n}^{+}+\sum_{k \in \mathcal{H}_{A-1}} \mathbf{S}_{k}^{-} \varepsilon_{k}^{-} \equiv \mathbf{h}^{\mathrm{cent}}
$$

- Eigenvalues of $\mathbf{h}^{\text {cent }}$ represent ESPEs

$$
\mathbf{h}^{\mathrm{cent}}\left|\psi_{\beta}^{\mathrm{cent}}\right\rangle=e_{\beta}^{\text {cent }}\left|\psi_{\beta}^{\mathrm{cent}}\right\rangle
$$

- In Baranger basis, ESPEs are energy centroids

$$
e_{\beta}^{\mathrm{cent}} \equiv \sum_{n \in \mathcal{H}_{A+1}} S_{n}^{+\beta \beta} \varepsilon_{n}^{+}+\sum_{k \in \mathcal{H}_{A-1}} S_{k}^{-\beta \beta} \varepsilon_{k}^{-}
$$

$\xrightarrow{\prime \prime} \rightarrow$ Baranger procedure is independent of the underlying theoretical approach
$\xrightarrow{\mathrm{m}} \rightarrow$ However, ESPEs values depend on the scheme and scale of the theoretical approach

Effective single-particle energies (II)

© At fixed scheme, scale dependence relates to changes in the input interaction

- E.g. via a unitary transformation of the Hamiltonian
$\quad \mathrm{m} \rightarrow$ Proven to affect ESPEs
\rightarrow While observables \sim unchanged
[Duguet et al. 2015]

\odot At fixed scale, scheme dependence relates to degrees of freedom, model assumptions, ...
- E.g. valence-space vs full-space approaches
- Also concerns "experimental" ESPEs (entering e.g. via DWBA calculations)
- Ultimately relates to (non-observable) "correlations" in the nuclear wave functions
$" \rightarrow$ No "true/correct" theoretical scheme, all equally valid!
$\xrightarrow{\prime \prime} \rightarrow$ ESPEs from different schemes must be compared with care

Physics case

\odot Central, spin-orbit and tensor operators at play in nuclear interactions
\rightarrow How do they impact nuclear shell structure (and its evolution with $\mathrm{N} \& \mathrm{Z}$)?
\odot E.g., evolution of energy splitting between spin-orbit partners well understood

$$
\Delta_{n \ell}^{\mathrm{SO}} \equiv e_{n \ell_{j}}^{\mathrm{cent}}-e_{n \ell_{j}}^{\mathrm{cent}} \quad \text { with } \quad \begin{aligned}
& j_{>}=\ell+s \\
& j_{<}=\ell-s
\end{aligned}
$$

$\xrightarrow{\prime} \rightarrow$ Smooth evolution with A and n
\odot Tensor force expected to perturb this picture
\circ Repulsive between $\mathrm{j}<$ and $\mathrm{j}^{\prime}<$
\circ Attractive between $\mathrm{j}<$ and $\mathrm{j}^{\prime}>$

- Focus on $1 \mathrm{~d}_{5 / 2}-1 \mathrm{~d}_{3 / 2}$ splitting in $\mathrm{N}=20$
[S. Jongile et al. submitted]
- When going from $Z=20$ to $Z=16$
\rightarrow Mairle evolution predicts increase of Δ^{SO}
What happens?

The experiment

\odot One-neutron transfer reaction ${ }^{36} \mathrm{~S}(\mathrm{p}, \mathrm{d}){ }^{35} \mathrm{~S}$ at $\mathrm{E}_{\mathrm{p}}=66 \mathrm{MeV}$ @ iThemba LABS

- Challenge: strength typically fragmented over large energy range

Excitation spectra

\odot Excitation energies can be cleanly compared between experiment \& theory
๑ Theoretical set-up: SCGF in $\operatorname{ADC}(2) \& \operatorname{ADC}(3), \mathrm{NNLO}_{\text {sat }}(2 \mathrm{~N}+3 \mathrm{~N})$ interaction

Spectral function

○ DWBA calculations to obtain spectroscopic amplitudes from measured cross sections
" \rightarrow "Experimental" spectral function is in fact theoretical-scheme-dependent
$\xrightarrow{m} \rightarrow$ Consistent calculation performed for ${ }^{40} \mathrm{Ca}(\mathrm{p}, \mathrm{d}){ }^{39} \mathrm{Ca}$ reaction (+ 1 n addition channels)
[S. Jongile et al. submitted]

Spin-orbit splitting

© Resulting ESPEs determine spin-orbit splitting in the two nuclei
[S. Jongile et al. submitted]

Calculations without tensor operator $\left.\rightarrow \Delta^{\mathrm{SO}(40} \mathrm{Ca}\right)<\Delta^{\mathrm{SO}(36 \mathrm{~S})}$

Stability of ESPEs (I)

\odot Direct-reaction approach restricted to ω accessible via one-nucleon removal/addition experiments
© Shell model restricted by construction to energy range of the valence space
๑ Within the ab initio approach, one can examine the impact of limiting the energy range

$$
\mathbf{M}^{(1)}=\sum_{n \in \mathcal{H}_{A+1}} \mathbf{S}_{n}^{+} \varepsilon_{n}^{+}+\sum_{k \in \mathcal{H}_{A-1}} \mathbf{S}_{k}^{-} \varepsilon_{k}^{-} \equiv \mathbf{h}^{\mathrm{cent}}
$$

$$
\text { imposing } \quad\left|\varepsilon_{p}^{ \pm}\right| \leq E_{\text {cut }}
$$

Stability of ESPEs (II)

๑ Further hypothesis of DR and SM approaches \rightarrow use of a single harmonic oscillator shell

- Ab initio: approximation of omitting off-diagonal elements in spectroscopic matrices
[V. Somà \& T. Duguet submitted]

Similar trend, but different end result

$\rightarrow 5 / 2^{+}$more fragmented in ${ }^{36} S$

Conclusions

© Notion of shell structure (\& its evolution) based on effective single-particle energies

- Unambiguous procedure, but result does depend on scheme and scale of the theory

\odot Present work illustrates dependence on the theoretical scheme
- Ab initio (full-space) SCGF calculations
- Application to evolution of neutron $\ell=2$ spin-orbit energy splitting in $N=20$ nuclei
\rightarrow Reduction interpreted as fingerprint of tensor force
\rightarrow Qualitative understanding of scheme dependence
\rightarrow Approximations make ab initio closer to DR \& SM (To be taken with a grain of salt!)

[^0]: Articles

 - S. Jongile et al., submitted (2023)
 - V. Somà \& T. Duguet, submitted (2024)

