Coexisting Shapes and Precision Tests of Monte-Carlo Shell-Model Calculations in ⁹⁶Zr

LNL experiments: N. Marchini^{1,2}, F. Ercolano³, M. Rocchini², A. Nannini^{1,2}, D.T. Doherty⁴, M. Zielińska⁵, K. Hadyńska-Klęk⁶, A. Goasduff^{7,8,9}, M. Balogh⁷, D. Testov^{8,9}, P. Aguilera⁷, F. Angelini⁷, G. Benzoni¹⁰, F. Camera^{10,11}, S.D. Bakes^{4,7,8}, D. Bazzacco^{8,9}, J. Benito^{7,8}, T. Berry⁴, D. Brugnara^{7,8}, M.H.V. Brunet⁴, S. Buck¹², G. Carozzi^{7,8}, W.N. Catford⁴, R. Coleman¹², R. Escudeiro^{7,8}, A. Ertoprak⁷, G. de Angelis⁷, M. De Rizzo^{7,8}, F. Galtarossa⁷, P.E. Garrett¹², N. Gelli², A. Gottardo⁷, A. Gozzelino⁷, B. Gongora⁷, A. Illana⁷, D. Kalaydjieva⁵, W. Korten⁵, J. Keatings¹³, A.R.L. Kennington⁴, Md.S.R. Laskar¹⁰, M. Matejska-Minda¹⁴, D. Mengoni^{8,9}, L. Morrison⁴, D.R. Napoli⁷, M. Ottanelli², P. Ottanelli^{1,2}, G. Pasqualato^{8,9,15}, J. Pellumaj⁷, R.M. Perez-Vidal⁷, S. Pigliapoco^{7,8}, E. Pilotto⁷, F. Recchia^{8,9}, K. Rezynkina⁸, S. Riccetto¹⁶, M. Scheck¹³, M. Siciliano^{7,8}, G. Sighinolfi⁹, J. Sinclair¹³, K. Stoychev¹⁵, J.J. Valiente Dobon⁷, K. Wrzosek-Lipska⁶, L. Zago⁷, G. Zhang⁸, I. Zanon⁷, T. Zidar¹²

MLL experiments: M. Zielińska⁵, P.E. Garrett¹², A. Bergmaier¹⁷, H. Bidaman¹², V. Bildstein¹², A. Diaz
 Varela¹², D.T. Doherty⁴, T. Fästermann¹⁸, R. Hertenberger¹⁹, A.T. Laffoley¹², A.D. MacLean¹², S. Pannu¹², M. Rocchini^{2,12}, P. Spagnoletti¹³, M. Vandebrouck⁵, and K. Wrzosek-Lipska⁶

¹ University of Firenze, Italy; ² INFN Firenze, Italy ³ University of Naples, Italy; ⁴ University of Surrey, UK; ⁵ CEA Saclay, France; ⁶ HIL, University of Warsaw, Poland; ⁷ INFN, Laboratori Nazionali di Legnaro, Italy; ⁸ University of Padova, Italy; ⁹ INFN Padova, Italy; ¹⁰ INFN Milano, Italy; ¹¹ University of Milano, Italy; ¹² University of Guelph, Canada; ¹³ University of the West of Scotland, Paisley, UK; ¹⁴ IFJ-PAN, Kraków, Poland; ¹⁵ IJCLab, Université Paris-Saclay, France; ¹⁶ University and INFN Perugia, Italy; ¹⁷ Universität der Bundeswehr München, Germany; ¹⁸ Technische Universität München, Germany; ¹⁹ Ludwig-Maximilians Universität München, Germany;

Shape coexistence around Z=40

K. Heyde and J. Wood, Rev. Mod. Phys. 83, 1467 (2011) P. Garrett, MZ and E. Clément, Prog. Part. Nucl. Phys. 124, 103931 (2022)

• islands of shape coexistence observed in the vicinity of shell closures

- Z=40 only a sub-shell closure, but strong evidence for shape coexistence in:
 - ^{96,98}Sr (E. Clément et al, Phys. Rev. Lett. 116, 022701 (2016))
 - ⁹⁶Zr (C. Kremer et al, Phys. Rev. Lett. 117, 172503 (2016))
 - ⁹⁴Zr (A. Chakraborty et al, Phys. Rev. Lett. 110, 022504 (2013))

Shape coexistence in ⁹⁶Zr – experimental information

 B(E2; 2⁺₂ → 0⁺₁) measured using electron scattering, combined with known branching and mixing ratios:

 \rightarrow transition strengths from the 2⁺₂ state

- B(E2; 2⁺₁ → 0⁺₁) = 2.3(3) Wu vs B(E2; 2⁺₂ → 0⁺₂) = 36(11) Wu: nearly spherical and a well-deformed structure (β ≈ 0.24)
- very low mixing of coexisting structures: $\cos^2\theta_0 = 99.8\%$, $\cos^2\theta_2 = 97.5\%$

Shape coexistence and type-II shell evolution in Zr isotopes

- p-n tensor interaction reduces the Z=40 gap when νg_{7/2} is being filled
- 0⁺₂ states created by 2p-2h
 (+ 4p-4h...) excitation across Z=40
- very different configurations and small mixing of 0⁺₁ and 0⁺₂

Shape coexistence in ⁹⁴Zr

T. Togashi et al, PRL 117, 172502 (2016)

- MCSM calculations suggest a variety of shapes appearing at low excitation energy in Zr nuclei
- ⁹⁴Zr selected as the first candidate for a detailed experimental investigation
- oblate deformed structure predicted to be built on the 0⁺₂ state

– a deformed band built on 0^+_2

Coulomb excitation of ⁹⁶Zr at MLL

- Coulomb-excitation measurements with magnetic spectrometers common in 1970s, but completely abandoned in favour of γ -ray spectroscopy
- still a very attractive option, especially to populate higher-lying low-spin states: very high beam intensities (~100 pnA) can compensate for low cross sections
- ¹²C, ¹⁶O beams: direct measurement of population of 2⁺ and 3⁻ states \rightarrow precise B(E2; 2⁺_i \rightarrow 0⁺₁) and B(E3; 3⁻_i \rightarrow 0⁺₁) values
- Coulomb-excitation campaign in January and August 2019

Results: collectivity in the band built on 0^+_2 in {}^{96}Zr

- B(E2; 2⁺₂ → 0⁺₁) = 0.270(27) W.u., versus 0.26(8) W.u. from Kremer et al (fully consistent, but 3 × better precision))
 - B(E2; $2_2^+ \rightarrow 0_2^+$) = 36(4) W.u.
- for comparison: B(E2; 2⁺₁ → 0⁺₁) agrees within 1σ with the literature value (2.74(15) W.u. vs 2.3(3) W.u.))

Coulomb excitation of ⁹⁶Zr with AGATA at LNL

- AGATA array (11 ATCs), close-up position
- SPIDER: modular array of Si detectors segmented into 8 annular strips (junction side)
 θ_{LAB} = 124° 161° (detection of

back-scattered ⁵⁸Ni ions)

• data taking: October 21-25, 2022

Coulomb excitation of ⁹⁶Zr with AGATA at LNL

- problems to get the ⁹⁶Zr material for the targets due to the Russia-Ukraine war; obtained targets with lower isotopic enrichement than reported
- data analysis: cut on excitation energy to remove the fusion-evaporation background
- analysis in progress
 (N. Marchini, F. Ercolano)
- aim: extraction of quadrupole moments in ⁹⁶Zr

Octupole collectivity in Zr isotopes: anomalous value for ⁹⁶Zr

- B(E3; 3⁻₁ → 0⁺₁) value in ⁹⁶Zr strikingly high (evaluated value: 53(6) W.u.), comparable with those known for nuclei with rigid pear shapes
- long-standing challenge for theory

T. Kibédi and R.H. Spear, At. Data Nucl. Data Tables 80, 35 (2002)

Octupole collectivity in ⁹⁶Zr: AGATA result

 our preliminary result (F. Ercolano, MSc thesis, 2023) points to lower octupole collectivity in ⁹⁶Zr

 obtained value in excellent agreement with E3 strength resulting from a new measurement of E1/E3 branching ratio in ⁹⁶Zr (Ł. Iskra et al, Phys. Lett. B 788 (2019) 396)

Remaining questions

Revised branching and mixing ratios in ⁹⁶Zr: J. Wiśniewski et al, Phys. Rev. C 108, 024302 (2023)

- which 4⁺ belongs to which band? if 4⁺₁ is part of the deformed structure, why is its decay to the 2⁺₁ so strong (mixing between bands should be weak)?
- the 2⁺₃ →2⁺₂ decay seems surprisingly enhanced
- E1 transitions from presumably collective states compete with E2 ones; in particular, the 6⁺ state decays predominantly via E1; is it related to a two-phonon octupole vibration?

Remaining questions

Revised branching and mixing ratios in ⁹⁶Zr: J. Wiśniewski et al, Phys. Rev. C 108, 024302 (2023)

- which 4⁺ belongs to which band? if 4⁺₁ is part of the deformed structure, why is its decay to the 2⁺₁ so strong (mixing between bands should be weak)?
- the 2⁺₃ →2⁺₂ decay seems surprisingly enhanced
- E1 transitions from presumably collective states compete with E2 ones; in particular, the 6⁺ state decays predominantly via E1; is it related to a two-phonon octupole vibration?

Outlook: complementary measurements on ⁹⁶Zr

- combination of a lifetime study with safe and unsafe Coulomb-excitation cross-section measurement with a ⁹⁶Zr beam (AGATA@LNL, MZ, N. Marchini et al) – presented at LNL PAC meeting this morning
- (p,p') on ⁹⁶Zr (AGATA@LNL, November 2023, D. Stramaccioni et al) search for the direct 6⁺ → 3⁻ decay in order to verify the hypothesis of the 6⁺ state being a double octupole phonon state
- β decay into ⁹⁶Zr (TRIUMF, December 2023, M. Rocchini, MZ et al) precise measurement of branching and mixing ratios in the decay of spin-0,1,2,3 states