InTraNS 2024 Workshop

Mirror energy differences between ${ }^{43} \mathrm{Ti}$ and ${ }^{43} \mathrm{Sc}$: a direct insight into the wave-functions

Kseniia Rezynkina

INFN, Sezione di Padova

INFN
Istituto Nazionale di Fisica Nucleare
Sezione di Padova

25 January 2024 Orsay, France

Introduction : proton-neutron symmetry

- Exchange symmetry between π and $v \rightarrow$ isospin \mathbf{T}

$$
V_{p p}=V_{n n}
$$

$$
V_{n p}=\frac{\left(V_{p p}+V_{n n}\right)}{2}
$$

- States with the same T in $\mathrm{N}=\mathrm{Z}$ mirror nuclei \rightarrow Isobaric Analogue States (IAS)
- $\boldsymbol{\Delta} \boldsymbol{E}_{x}$ between same-T states in isobaric doublets \rightarrow Mirror Energy Differences (MED)

$$
\operatorname{MED}_{J, T}=E_{J, T, T_{z}=-T}^{*}-E_{J, T, T_{z}=T}^{*}
$$

- Differences between IAS magnifies isospin nonconserving effects

Shell model interpretation of MED

Coulomb effects:

- Multipole Coulomb term V_{Cm} : allignement of the valent protons
- Monopole term V_{Cm} :

1. radius changes with J

2. $\ell \cdot \ell$ term to account for shell effects
3. $\ell \cdot s$ electromagnetic spin-orbit term (EMSO) changes in single-particle energies different on π and v, and when ℓ and s are parallel or aligned \rightarrow Important in cross-shell excitations

Isospin non-conserving term $\mathbf{V}_{\mathbf{B}}$: charge symmetry breaking

$$
M E D=V_{C M}+V_{C m}+V_{B}
$$

Mirror symmetry in the $f_{7 / 2}$ shell

- between ${ }^{40} \mathrm{Ca}$ and ${ }^{56} \mathrm{Ni}$: classic "playground" for isospin symmetry studies:
- more available experimentally
- calculations can be limited to few shells (sd and fp)
- nice way to study the interplay of the ISB effects

M.A. Bentley, S.M. Lenzi, Prog. Part. and Nuc. Phys. 59 (2007) 497-561

${ }^{43} \mathrm{Sc}$: negative-parity states

yrast structure, based on the 7/2- g.s., is non-collective terminates at the maximum spin that can be generated with one π and $2 v$ in a pure $\boldsymbol{f}_{7 / 2}$ configuration till $/=19 / 2^{-}$

$$
J=6
$$

${ }^{43} \mathrm{Sc}$

${ }^{43} \mathrm{Sc}$: positive-parity states

${ }^{43} \mathrm{Sc}$

$\mathrm{A}=43$ mirror pair

- Scheme of yrast states in ${ }^{43}$ Ti known before this work
- The $3 / 2^{+}$appears at 312 keV instead of 152 keV because $N, Z=20$ gap size is different for π and v
- EMSO has a strong effect on MED \rightarrow study evolution of wavefunction as a function of the angular momentum

Experiment: spectroscopy of ${ }^{43} \mathrm{Ti}$

${ }^{43} \mathrm{Ti}-2 \mathrm{n}$ evaporation
Stronger channels: ${ }^{43}$ Sc 1p1n
${ }^{43} \mathrm{Ca} 2 \mathrm{p}$
${ }^{40} \mathrm{Ca}$ 1a1n
${ }^{40 K}$ 1a1p

JYFL experiment JM11

Reaction: ${ }^{33} \mathrm{~S}+{ }^{12} \mathrm{C} \rightarrow{ }^{43} \mathrm{Ti}+2 \mathrm{n} @ 100 \mathrm{MeV}$ beam energy

Focal plane:

(talk by J. Pakarinen)

Prompt JUROGAM 3 spectrum

After selection with MARA, still many A/Q "twins" get transported to the focal plane

Additional constraints are needed!

JYTube: charged particle tagging

MED: Negative-partiy states

~ MED exp
—— MED theor

Agreement with Shell Model within 25 keV

MED: Positive-partiy states

MED: Positive-partiy states

Correlation between MED and excitations across the $\mathrm{N}, \mathrm{Z}=20$ gap

difference in excitation probability

Systematic study of the $d_{3 / 2}$ occupancy

$d_{3 / 2}$ occupancy compared to MED

Conclusions

- Extended the level scheme of ${ }^{43}$ Ti up to $25 / 2^{+}$
- For the negative-parity states, good agreement of MED between experiment and Shell Model
- The MED in A=43 increase after $15 / 2^{+}$because the excited nucleon is not always the same
- This is put in evidence in the EMSO term (difference in the gap π and v)
- As the calculations are in good agreement with the experiment, we can say that the experimental MED allow us to probe the wavefunction

JM11 collaboration

K. Rezynkina, S.M. Lenzi, F. Recchia, P. Aguilera, J. Benito, S. Carollo, R. Escudeiro, J. Ha,
S. Pigliapoco et al.

INFN Sezione di Padova and University of Padova
M.L. Cortes, D. Napoli

INFN Legnaro National Laboratories
K. Auranen, T. Grahn, P. Greenlees, A. Illana, R. Julin, H. Joukainen, H. Jutila, M. Leino, J. Louko, M. Luoma, J. Ojala, J. Pakarinen, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Sarén, A. Tolosa Delgado, J. Uusitalo, G.L. Zimba University of Jyväskylä

