Observational Science Board - Update

Marica Branchesi, Michele Maggiore, Ed Porter 2nd ET Annual Meeting Orsay, 14-16 Nov. 2023

Outline

- Plan of action for the meeting:
 - OSB Blue Book discussion
 - OSB division chairs F2F
 - OSB/EIB MMA session (will leave for EIB to report)
 - OSB Mock Data Challenge

- Presentation from all 10 divisions
- Each division has an advanced structure for their chapter
- ln most cases, the writing teams have been put together and are working
- There are still a small number of cases where people are yet to be identified, but there are no show stoppers!
- We expect first drafts by the end of the year
- Div. 5 and Div. 10 will be later.
 - Div. 5 had a later start than the other divisions
 - Div. 10 will be mostly based on the MDC

- During our meeting with the division chairs:
 - we clarified that the BB will be based on a 10km triangle and 2x15km Ls with a 45 degree rotation configurations
 - where the sensitivity curves will be those used for the CoBA study
 - decided we need a ticketing system for comments (Gitlab) rather than comments being made directly in Overleaf
 - Weight and a second on the second of the
 - authorship models
 - overall structure allowing ease of reading of a 500+ page document for both specialists and non-specialists
 - BB journal destination

- No major problems identified
- Our timetable of initial draft by the end of the year and mature draft by summer 2024 is still good

Division Chairs Meeting

- Blue Book
 - action items: improve BB development and content communication between chairs of the different divisions
- Division participation
 - Lot of people signed up to OSB divisions, but low participation at OSB telecons
 - Division chairs finding it difficult to identify contributions of members
 - Searching the ET-MD for individuals is time consuming

Division Chairs Meeting

- Publications
 - While the OSB publication review is light, at present it is being done solely by the division chairs
 - This is a time consuming overhead and comes in clusters
 - We need an Editorial Board and a Review Board asap
- Communication
 - Mattermost and Gitlab are underused in the OSB. Need to improve this.
 - Will begin monthly meetings with the division chairs to ease coordination across the groups

Mock Data Challenge

Contents

1	Inti	roduction	BIN
2		ting the fundamental principles of the gravitational in- actions	
	2.1	Parametrized PN tests (inspiral)	3
	2.2	Ringdown tests	3
	2.3	Extra polarizations	5
	2.4	Numerical simulations beyond GR	10
		2.4.1 Binary BH mergers	10
		2.4.2 Binary NS mergers	12
		2.4.3 Stellar core collapse	15
		2.4.4 Boson and Proca star merger	17
		2.4.5 Other nonlinear simulations with relevance to GW	
		emission	19
	2.5	Neutron stars and fundamental physics: Degeneracies with	
		modified gravity and BSM physics	19
	2.6	SGWB	22
	2.7	Tests of Lorentz violation and minimal length	22
3		ting the nature of compact objects and horizon-scale	
	phy		23
	3.1	Motivation	23
	3.2	Inspiral tests	25
		3.2.1 Fundamental couplings	25
		3.2.2 Tidal heating	25
		3.2.3 Tidal effects	25
	3.3	Ringdown tests: QNMs and echoes	26

1/4	GW	-based searches for dark-matter candidates and new field	5
N	4.1	Searches for ultralight bosons	29
- //		4.1.1 Direct detection of DM with GW detectors	29
1	λ	4.1.2 Detection of ultralight bosons through black-hole su-	
	W.	perradiance	31
	1/8	Environmental and dark-matter effects on GW signals	33
-	-	4.2.1 Signatures in binary systems	34
		4.2.2 Primordial Black Holes (synergy with Pop Div3)	36
A	Syn	ergies with other Divisions	38
	A.1	Improve current (GR and beyond) waveform models to match	
		ET requirements [with Div8:Waveform sytematics and accu-	
		racy requirements	38
		A.1.1 State of the art	38
		A.1.2 Open challenges	39
	A.2	Fundamental aspects of the two-body problem in GR [with	
		Div8: Techniques for waveform modeling	41
	4 9	GW propagation tests / Identifying the origin of merging bi-	
	$\sigma_{c,c}$	G W propagation tests / fuentitying the origin of merging or-	
	n.a	naries across cosmic history [with Div3]	41

Contents

1	Merger rate density of CBC across cosmic time		
2	Primordial versus stellar-origin BHs		
3	Reveal Population III stars with the first BHs		
4	Constrain the mass function of NSs		
5	Constrain the mass function of BHs and its possible evolution with redshift		
6	Lower and upper mass gap		
7	Constrain the formation channels of binary compact objects		
8	Intermediate-mass BHs (IMBHs): Formation channels and merger rate		
9	The spin of BHs and NSs		
10	The host galaxies of binary compact objects		
11	Astrophysical backgrounds 11.1 Study BBHs channels SFH 11.2 Study of population III 11.3 BNS residual mergers 11.4 Primordial black hole contributions 11.5 Astrophysical Uncertainties in background description 11.6 Sources other than CBCs		
12	Astrophysical backgrounds: detection challenging 12.1 Background Mapping		

Contents

1	Introduction Waveform systematics & accuracy requirements for 3G			
2				
3	Techniques for waveform modeling: Current state & advances 3.1 Numerical Relativity	6 6 10		
	3.3 Gravitational Self-Force	13		
	3.4 Inspiral-Merger-Ringdown Models	17 20		
4	Waveform Models for Specific Sources 4.1 Binary black holes	23 23		
	4.2 Binary Neutron Stars	26		
	4.3 Neutron Star – Black Hole Binaries	29 34		
	4.4.1 Early universe remnants as resolvable sources	34		
	4.4.2 Core-Collapse Supernovae	36 37		
	4.5 Waveforms in alternative theories of gravity	40		
5	Waveform Acceleration Techniques	44		
6	Summary			