

LVK strategy on Multimessenger Science

Roberto De Pietri and Sara Vallero (VIRGO COLLABORATION)

Discussion on multimessenger science and supporting computing infrastructure at the 2nd annual Einstein Telescope meeting (**November 15 from 14:10 - 15:55**)

The Goals

• Disseminate **public alerts** of transient GW (and MMA involving GW) detections.

• Enable the discovery of **EM and neutrino counterparts** to GWs (and vice versa) and assist the (common) source characterisation.

• Provide **feedback to the instrument** teams by facilitating the diagnosing of detector problems via real-time analysis.

The O4 system - alerts timeline and thresholds

	EARLY WARNING	 Detect signal before the merger phase Dedicated pipelines Alert gamma-ray space telescopes
few 10s few 100s	PRELIMINARY PRELIMINARY PRELIMINARY	 Up to 3 preliminary alerts with increasing significance
few hours	Human vetting	ETRACTION
,	UPDATE UPDATE 	 improved calibration, de-glitching, or computationally deeper parameter estimation better significance better sky localisation

- The False Alarm Rate (FAR) threshold for public alerts is 2/day.
- Significant gravitational-wave alerts:
 - FAR < 1/month for CBC searches
 - FAR < 1/year for Bursts searches
 - pass automated and manual verification tests.
- All other alerts have low-significance.
- The FAR of the alerts threshold for the single pipeline computed FAR is determined by dividing the declared FAR by a *trial factor* that considers the number of active pipelines per search type (CBC or Burst).

R. De Pietri, S. Vallero, "LVK strategy on Multimessenger Science", Einstein Telescope Annual Meeting: Nov. 14, 2023 -- Nov. 16, 2023.

The O4 system - alerts latency

Updates

from few hours to 1 week, mostly within 1 day.

Initial or retraction

within 1 hour (most of the time).

Second preliminary in about 5 minutes .

First preliminary in 20s to 60s.

orange = preliminary, blu = initial, red=retraction, purple = update (after first rapid PE)

The O4 system - duty factor and alert rates

Network duty factor Since the beginning of O4.

[BLUE] Double interferometer	59%					
[Orange] Single Interferometer	28%					
[Grey] No interferometer	13%					

Significant alerts are of CBC type $\rightarrow 2.7$ per week (the burst one was retracted)

Number of **significant** alerts per week of operation

R. De Pietri, S. Vallero, "LVK strategy on Multimessenger Science", Einstein Telescope Annual Meeting: Nov. 14, 2023 -- Nov. 16, 2023.

LVK strategy - distribute using GCN and SCiMMA

NASA's Time-Domain and Multimessenger Alert System

https://gcn.nasa.gov/

Scalable Cyberinfrastructure to support Multi-Messenger Astrophysics

HOPSKOTC

We use the Hop.SCIMMA production instance they provide based on HOPSKOTCH Software and a server that provides a scalable, high-throughput, low-latency platform for handling real-time data streams for MMA applications, which:

- provides a cloud-based instance of Kafka data streams to support MMA applications via a publish-subscribe paradigm
- allows for "at least once" delivery semantics

SCIMMA

https://scimma.org/

- allows catchup if a client is unavailable or needs to reprocess recent alerts
- offers extensive identity and access management controls and fine-grained Kafka topic permission configuration to respect data rights as documented online with the <u>HOPSKOTCH authenticator</u>

Data products and localization

EVENT PROPERTIES (for CBC events)

- based on the assumption that the event is of astrophysical origin and corresponds to a CBC event
- meaningful only in the case of astrophysical events
- values are **updated** (as well as the localization) after **parameter estimations (PE)** but still have the assumption that the signal is a CBC one.

EVENT CLASSIFICATION (for CBC events)

- provided by the pipeline and based on injection campaigns with Astrophysical rates
- tailored to the characteristics of the pipeline and its sensibility to the detector noise
- not (usually) updated because it depends on the real-time pipeline used to generate the localization skymap
- for CBC alerts is **updated** (within few hourw and possibly with the initial alert) by rapid PE tasks.

DURATION and **CENTRAL FREQUENCY** (for Burst events)

• frequency position of the signal and the detected signal's duration (signal over the noise).

SKYMAP (for CBC events)

- the case of CBC signal, the localization information also includes distance information
- not available for burst events.

The Low Latency Alert Generation Infrastructure (LLAI)

Multiple components come into play:

- **Data acquisition** and production of h(t) data
- Transfer of data to compute centers for real-time data analysis
- Trigger production by **online transient-search** (CBC and Burst) search pipelines
- **Recording** of transient triggers into the event DataBase (graceDB)
- This is where the Low Latency Alert Pipeline (GWCelery) commences to process events under multiple tasks:
 - **Event aggregation** resulting from multiple search pipelines but due to the same physical event in the detectors
 - **Enrichment** of the events with source classification, other properties, sky localization, as well as detector characterization information
 - **Distribution of the alert** to the transient astronomy community via multiple event brokers/formats (these are what we refer as Public Alerts)

CBC pipelines	Burst pipelines
MBTA	<u>cWB</u>
GstLAL	<u>oLIB</u>
SPIIR	
PyCBC	

The Low Latency Alert Generation Infrastructure (LLAI)

RGC

GraceDB - the event database

- Different deployments (tiers): ٠
 - Production •
 - Playground: designed for users to develop and test their own applications. It mimics the production instance, but events and associated data are not preserved indefinitely. Used in Mock Data Challenges
 - Test: designed for Quality Assurance (QA) testing and validation for GraceDB and electromagnetic follow-up developers. Software should meet QA milestones on the test instance before being moved to Playground or Production.

Log Messages Data Quality

Full Event Log

External Coincideor

- Web application: •
 - provides long-term storage for its inputs, outputs and • by-products
 - accessible via GUI or API
 - relational database and local storage for persistence
 - deployed in replica 3 (each tier)

	B (TEST) Public Alerts Latest Searc	h Alerts Pipelines Docu	mentation	Admin Docs Logout			
Authenticated as: San	s Vallero						
MS230309I	EM_COINC EM_Selected EM_READY PASTRO_READY EMBRIGHT_READY SKYMAP_READY GCN_PRELIM_SENT DQR_REQUEST ADVOK	9.110699364861297e- 14	M30761	M30767 M30766 M30765 M30764 M30763 M30762 M30761 M30760 M30759 M30758 M30757 M30756 M30755 M30754 M30753 M30752 M30751	1362397199.376	2023-03-09 11:44:49 UTC	Sara Vallero
MS230309k	EM_Selected EM_READY EMBRIGHT_READY PASTRO_READY SKYMAP_READY GCN_PRELIM_SENT DQR_REQUEST ADVNO	5.176954877338635e- 16	M30736	M30750 M30749 M30748 M30747 M30746 M30745 M30744 M30743 M30742 M30741 M30740 M30739 M30738 M30737 M30736 M30735	1362393223.659	2023-03-09 10:44:48 UTC	Sara Vallero

GWCelery - the event annotation service

Superevent Manager: clusters and merges related candidates into *superevents*

External Trigger Manager: correlates gravitational-wave events with GRB, neutrino, and supernova events

Orchestrator: executes the per-event annotation workflow

- these functional components are roughly mapped to Celery workers
- 1 Celery worker has been configured to accept only computationally intensive tasks that use OpenMP parallelism (HTCondor cluster)

Low-latency data distribution

- h(t) data are ready to be analyzed online in less than 11
 seconds from the acquisition by the detectors.
- This makes **pre-merger alerts** (with negative latency) **possible.**
- The **first Preliminary** alert is available **in less than a minute**.

Conclusions

- No major change is expected for the rest of O4.
- It is based on the **gwcelery** annotation services.
- Relying on external services for the alerts dissemination (SciMMA/GCN-TACH).
- Delocalized computational infrastructure for search/pipeline computation (multiple computing centers involved). The central event database (GraceDB) on AWS.
- We are focused on generating alerts with minimum latency (~30s) and continuous effort to reduce latency and uptime.

- Improving and maintaining the public database (GraceDB) of triggers and alerts.
- Improve resilience of the system against single points of failure.
- Start working on planning for O5

EXTRA SLIDES

R. De Pietri, S. Vallero, "LVK strategy on Multimessenger Science", Einstein Telescope Annual Meeting: Nov. 14, 2023 -- Nov. 16, 2023.

Low Latency Architecture

