

Sky-localization

Ronchini, A&A 2022

- ET: O(100) detections per year with sky-localization (90% c.r.) < 100 sq. deg
- ET+CE: O(1000) detections per year with sky-localization (90% c.r.) < 10 sq. deg
- ET+2CE: O(1000) detections per year with sky-localization (90% c.r.) < 1 sq. deg

Branchesi, Maggiore et al 2023, JCAP Iacovelli et al. 2022, ApJ

Prioritization of the triggers to be followed

Sky-localization

	ET	ET+CE	ET+2CE
N _{det}	143970	458801	592565
$N_{\rm det}(\Delta\Omega < 1~{\rm deg}^2)$	2	184	5009
$N_{\rm det}(\Delta\Omega < 10~{\rm deg}^2)$	10	6797	154167
$N_{\rm det}(\Delta\Omega < 100~{\rm deg}^2)$	370	192468	493819
$N_{\rm det}(\Delta\Omega < 1000 \ {\rm deg}^2)$	2791	428484	585317

Too large numbers of triggers well localized to be followed-up

Send in low-latency source parameters and continuous updates

Ronchini et al., A&A 2022

Early warning alerts

ET alone

Branchesi, Maggiore et al. 2023, JCAP

	Configuration	$\Delta\Omega_{90\%}$	All orientation BNSs			BNSs with $\Theta_v < 15^\circ$		
-	Comgutation	$[deg^2]$	$30 \min$	10 min	1 min	$30 \min$	$10 \min$	1 min
	$\Delta 10 { m km}$	10	0	1	5	0	0	0
		100	10	39	113	2	8	20
		1000	85	293	819	10	34	132
		All detected	905	4343	23597	81	393	2312
	2L 15 km misaligned	10	0	1	8	0	0	0
		100	20	54	169	2	7	26
		1000	194	565	1399	23	73	199
		All detected	2172	9598	39499	198	863	3432
	6							

Five minutes before the merger, a **factor 10 higher number of well-localizaed events** when ET operates in a network of next generation GW detectors

Banerjee et al. 2023, A&A Yufeng et al. 2022, PhRvD Nitz & Dal Canton 2021, ApJ Hu & Veitch, 2023 arXiv:2309.00970

Examples of joint numbers

GRB: gamma/X-ray

RELATIVISTIC JET PHYSICS, GRB EMISSION MECHANISMS, COSMOLOGY and MODIFIED GRAVITY

COSMOLOGY and MODIFIED GRAVITY

Ronchini et al., A&A 2022

Almost all detected short GRB will have a GW counterpartaround 70% ET and 95% ET+CE

Depending on the satellites, we will have tens to hundreds of detections per year

Crucial Instruments able to localize at arcmin-arcsec level to drive multiwavelength and spectroscopic follow-up!

Kilonova detection

- Sevaral tens per year of joint detections of VRO and ET
- Several hundreds when ET operates in network of detectors (also current generation ones)