

Parallelizing N-Queens with
Intel® Parallel Composer

Sample Code Guide

Document Number: 320506-001US

Revision: 1.2

World Wide Web: http://www.intel.com/

http://www.intel.com/

Parallelizing N-Queens with Intel® Parallel Composer

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R)
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT
DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE
INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH
MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time,
without notice. Designers must not rely on the absence or characteristics of any
features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject
to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known
as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest
specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this
document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by
visiting Intel's Web Site (http://www.intel.com/).

Celeron, Centrino, Intel, Intel logo, Intel386, Intel486, Intel Atom, Intel Core,
Itanium, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the
U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2009, Intel Corporation. All rights reserved.

2

http://www.intel.com/

Introduction

Contents
1 Introduction ...4

1.1 N-Queens Samples ...4
1.1.1 Locating the Samples ...5

1.2 The Problem ..5
1.2.1 Problem Analysis ...6
1.2.2 Algorithm ... 11

2 Parallelizing the Solution .. 14
2.1 The Serial “Solver” Function ... 14

2.1.1 Standard Template Library (STL) Solution 15
2.1.2 Serial Solution .. 15

2.2 Parallelizing the “Solver” ... 17
2.2.1 Windows* 32 Threading API.. 17
2.2.2 Parallelizing with __task and __taskcomplete 20
2.2.3 Starting with OpenMP* 3.0 ... 22
2.2.4 OpenMP* 3.0 Task queuing ... 24
2.2.5 Parallelizing with Intel® Threading Building Blocks (Intel® TBB) 25
2.2.6 Using lambda Functions with Intel® TBB 29

3 Comparing the Different Methods .. 30

4 Conclusion ... 32
4.1 References .. 32

Sample Code Guide 3

Parallelizing N-Queens with Intel® Parallel Composer

1 Introduction

This sample code guide will explore new and already existing parallel programming
language extensions, directives, and libraries available in Intel® Parallel Composer.

The basic idea is to present the parallelism alternatives provided by the Intel® Parallel
Composer and show how to apply them to a given algorithm. The key questions we
are addressing are how much coding is necessary to parallelize a given serial
application and which mechanisms are provided to benefit of threading with higher
level constructs?

These new parallel methods we are showing in this sample are:

• OpenMP* 3.0 directives

• New parallel extensions: __taskcomplete, __task, __finish, __par

• Intel® Threading Building Blocks (Intel® TBB) along with the “lambda” functions
language extension

Each of these new methods provide the C++ developer with a new range of
scalability, performance, and usability for developing parallel applications not
previously available in Intel® C++ Compiler products.

To illustrate the use and performance of these new features, this sample code guide
demonstrates how to use each method to implement parallel solutions to the N-
Queens problem, which is a well-known programming problem that has definite
solutions. This guide describes using each of these parallel techniques, shows the
code for each implementation, and compares and contrasts the utility and
performance of each implementation.

All code blocks and examples shown in this guide are taken from the actual code
samples included with the Intel® Parallel Composer.

1.1 N-Queens Samples
The N-Queens samples are a collection of Microsoft Visual Studio* project, solution,
and C and C++ source files. The algorithm can be tackled by different approaches; for
example, one can choose to optimize for speed or memory or both; therefore, there

4

Introduction

are several different samples available. The samples illustrate different approaches
and algorithms to solve the N-Queens problem.

If you are not familiar with the N-Queens problem, you can easily find information on
the history of the problem, and other possible methods for solving it, on the worldwide
web.

NOTE: The N-Queens problem was first published in 1848 in a German chess magazine by
Max Bezzel. The correct answer for the problem was found in 1850 by Dr. Franz
Nauck. The first solution for the general N-Queens problem was published in 1969.
[1]

1.1.1 Locating the Samples

After installing Intel® Parallel Composer, the N-Queens samples are located in the
<install-directory>\Samples\en_US\C++ directory as a ZIP archive named
NQueens.zip. Unpack this archive to a writable directory of your choice. A Microsoft
Visual Studio* solution is provided containing several projects.

1.2 The Problem
The ultimate goal of the N-Queens problem is to find the total number of distinct
solutions to place a given number of chess queens on a quadratic chess board with a
specific number of squares on one side of a board (N) in a way that no two queens
would be able to attack each other.

Two queens can attack each other when they are placed on the same horizontal row,
vertical column or in one of (2*(2*n - 1)) possible diagonals.

For example, on an eight-by-eight board, there are 92 distinct solutions. The
difference between a unique and distinct solution is that distinct solutions allow for
symmetrical operations, like rotations and reflections of the board, to be counted as
one; so an eight-by-eight board has 12 unique solutions.

Another interesting fact is that the complexity of the N-Queens problem increases
exponentially. The world record at the moment is held for the solution on a 25 x 25
board. It was solved on a heterogeneous cluster around the world similar to the more
popular Seti@home project and the cumulated computing time was over 50 years!

The number of solutions is: 2.207.893.435.808.352

Start date: October 8th 2004

End time: June 11th 2005

Sample Code Guide 5

Parallelizing N-Queens with Intel® Parallel Composer

Computation duration time = 4444h 54m 52s 854 i.e. 185 days 4 hours 54

minutes 52 seconds 854

The results are from (http://proactive.inria.fr/index.php?page=nqueens25).

1.2.1 Problem Analysis

The most common approach is to use the brute-force approach, which is to simply test
each position for each board size.

Unfortunately, trying a brute-force algorithm by testing if every position on the board
is valid will inevitably lead to a huge number of positions to validate (n2)!/((n2)-n)!;
even for a four-by-four board the possible number of positions is 16!/12! = 43680.

Applying a heuristic approach by only allowing one queen per row reduces the
problem size to a vector of n elements, where each element holds the position in the
row and the number of possible solutions reduces to nn.

This approach yields 256 positions a four-by-four board. One can reduce the number
further by allowing for only one queen per column, which will result in a tuple of
queens per column (Q1...Qn) which reduces the number of solutions to n!: only 24 for
our four-by-four board.

One can review the problem of the four-by-four board to illustrate one possible
solution. We start by placing the first queen in row 1, column 1, as shown in Figure 1.

Figure 1

Since there is no chance to place another queen on column 1, the next queen must be
placed in row 2, with the first possible placement being row 2, column 3 (Figure 2).

6

Introduction

Figure 2

Unfortunately, there is no way to place a queen on the third row so this placement is
not a viable solution; therefore, one must try another column on row 2, in this case
column 4, as shown in Figure 3.

Figure 3

The new position seems valid; the next placement might be row 3, column 2 (Figure
4).

Sample Code Guide 7

Parallelizing N-Queens with Intel® Parallel Composer

Figure 4

Unfortunately, the new placement leaves no options for row 4.

Starting over, one can place a queen at row 1, column 2 (Figure 5). Continuing the
original strategy, place the next queen at row 2, column 4.

Figure 5

The new placement allows one to add a new queen in row 3, column 1 (Figure 6).

8

Introduction

Figure 6

Finally, there is a possible solution because the new layout allows for another queen to
be placed in row 4, column 3 (Figure 7).

Figure 7

There might be other solutions. Starting in row 1, column 3 and stepping through the
placements again, one finds another solution that mirrors the first (Figure 8).

Sample Code Guide 9

Parallelizing N-Queens with Intel® Parallel Composer

Figure 8

A check of other possible solutions should convince you that none exist, so there are
two solutions on the four-by-four board. These are the only distinct solutions; how
many unique solutions exist?

To answer that question, one must look for symmetry. If you section the board using
dotted lines, and create mirror images reflected across the lines you might see
another solution (Figure 9).

There is only one unique solution as we can get the other one by reflection.

Figure 9

We could present the solution as a vector (v) of (n) values (for the rows). Every value
contains the number of the column where the queen can be placed.

10

Introduction

For the original sixteen squares (four-by-four) we have found: v[4] = [2 4 1 3] and
[3 1 4 2]

1.2.2 Algorithm

To summarize, the most obvious approach to solving the problems was to add pieces
recursively to the board trying to find all possible solutions.

It is relatively easy to determine that we can add one queen in each column and look
for solutions found based on the original placement of the first queen. The different
solutions are independent from the solutions from the queens in the other columns.
This is an example of a tree search, because the algorithm iterates down to the
bottom of the search tree once a queen is placed on the board.

The search tree of the above example looks like this:

Figure 10

To code our approach, one must define conditions when queen (a) can be attacked by
queen (b).

First, one must deal with the cases where queens are in the same row or column, v[a]
= v[b] here [4 x x 4].

Sample Code Guide 11

Parallelizing N-Queens with Intel® Parallel Composer

Figure 11

Second, one must define the condition where the queen can be attacked diagonally.
The difference of absolute row count and column count is equal, for a < b.

Both queens can attack each other if they stay on the same diagonal. There are two
possibilities: b-a = v[b] - v[a]

Figure 12

or, b-a = v[a] - v[b]

12

Introduction

Figure 13

We can combine both conditions to b-a = absolute value | v[a] -v[b] |. The resulting
algorithm might look like the following in pseudo code:

Read board size: n

Set row to 1

Set v[1] to 0

while (column > 0) do

[

 Find out a safe place in column where to safely place a queen

 if there is a location

 put v[row] = location

 if [row = n]

 [Write solution vector v[1 ... n]]

 end

 else

 if [row < n]

 go forward one line : row = row + 1

 set v[row] to 0

 end

 else do

 one column back : column = column - 1

 end

 end

]

Backtracking improves upon a brute-force search by building solutions step-by-step,
and being able to discard a partial solution along with all solutions that would be built
from it.

Sample Code Guide 13

Parallelizing N-Queens with Intel® Parallel Composer

This works for the eight-queen problem; for example, if one starts from an empty
board and adds queens one-by-one, the moment we add a queen there is a conflict,
and one can see that adding more queens will not remove the conflict; therefore, all
solutions derived from that queen can be discarded without testing them.

2 Parallelizing the Solution

This section describes the main “solver” routine and describes how to go about
parallelizing it. We’ll look at some basic parallel analysis and decomposition of the
algorithm so that we know what can be parallelized. Then, we’ll describe each of the
parallel solutions.

At the end of each solution, we’ll describe what we think are the tradeoffs to both
usability and performance we see in the methods.

First of all we need to find out where most of the time is spent in our program. This
will directly lead us to the point where we have to start with the parallelization. We
will use a profiler to find the hotspot in our program. In our case, this is the Intel
Performance Tuning (PTU) from the Whatif.intel.com web site
(http://whatif.intel.com/); however, you could some other profiler, such as the Intel®
VTuneTM Performance Analyzer.

2.1 The Serial “Solver” Function
We have implemented a couple of serial versions. The first version is almost an
inefficient direct translation of the pseudo code to C++, where we used a Standard
Template Library (STL) vector to keep the information of the solution vector. This
version is kind of inefficient as it resizes the STL vector any time a backtracking
solution is discarded. The next version replaces the variable vector by a fixed array to
get rid of the performance penalty. Of course this could be also handled differently.
The major change is that we use a more modular approach where we encapsulate the
solver and the placing algorithm in separate functions.

The straightforward algorithm is of course not the fastest one. Martin Richards the
father of BCPL presented in 2005 a solution for the Queens problem using a recursive
bit pattern algorithm. Our C++ version is a direct translation of the presented MCPL
version. Some additional notes on the different algorithms: First of all there are a lot
of clever possibilities how to improve the serial code. The second implementation is
the easiest one to use in a threaded playground to see how the different paradigms
can be implemented, so this is the basis for the parallel algorithms. Please keep in

14

http://whatif.intel.com/

Parallelizing the Solution

mind that the purpose of this sample code guide is NOT to teach the fastest possible
algorithm but to show different implementations of parallel paradigms.

The third algorithm is only included to show that the use of the fastest algorithm
should be done before starting with any parallelization concept. On the other hand it’s
much more complicated to understand.

NOTE: The back track tree version is based on the paper from Martin Richards. The original
paper can be found on: http://www.cl.cam.ac.uk/~mr10/ - Martin Richards
"Backtracking Algorithms in MCPL using Bit Patterns and Recursion"

2.1.1 Standard Template Library (STL) Solution

The sample code can be found in: ..\NQueens\nq-stl\

This sample represents a simple transcription of the above algorithm to C++ using an
STL vector object to represent the solution.

The vector methods pop_back/push_back expand and collapse the solution vector.
Accessing the STL vector in this manner is so poor that we replaced the vector by an
integer array in the next implementation.

2.1.2 Serial Solution

The sample code can be found in: ..\NQueens\nq-serial\

This sample represents a more modularized version of the N-Queens algorithm.
Everything is wrapped into the solve function, where the solution vector is replaced by
a simple integer array.

Inside the solve function we call setQueen() which loops over the different columns in
the first row. The advantage of this approach is that the different computations are
independent which makes it easier to parallelize later. The core loop of the nqueens
solver function is shown below.

void setQueen(int queens[], int row, int col) {

 for(int i=0; i<row; i++) {

 if (queens[i]==col) // vertical attacks

 return;

 if (abs(queens[i]-col) == (row-i)) // diagonal attacks

 return;

 }

Sample Code Guide 15

Parallelizing N-Queens with Intel® Parallel Composer

 queens[row]=col; // column is ok, set the queen

 if(row==size-1) {

 nrOfSolutions++;

 }

 else {

 for(int i=0; i<size; i++) { // try to fill next row

 setQueen(queens, row+1, i);

 } [...]

For each column (i) we start our recursive backtracking algorithm from our driver
function solve().

void solve(int queens[]) {

 for(int i=0; i<size; i++) {

 // try all positions in first row

 // create separate array for each recursion

 setQueen(queens, 0, i);

 }

}

Using a profiler allows you to find out where most of the time is spent in the program.

It should not be surprising that most time is spent in the abs() function, which we

use to calculate if two queens are on the same diagonal (see algorithm description).

16

Parallelizing the Solution

Therefore abs() is the hottest function in setQueen(), which itself is called 348150

times by our core solve function from above.

2.2 Parallelizing the “Solver”
This example cannot replace studying in depth the different parallel paradigms we
offer, but it will give you enough information to get you started. If you have worked
through the serial examples, you should be able to identify hotspots, which follows
nicely the Pareto principle which applies to most applications that 80% of the
performance is spent in 20% of the code. This consideration, in general, limits the
overall parallelization efforts. Next consider that one should start with parallelization
on the highest possible abstraction level to make the solution as general as possible.
This method should help make the approach reusable and refactorable for later use.

We have three modules to consider: solve(), setQueens(), and abs(). Of course the
solve() function is the one with the highest abstraction count and the abs() function
with the lowest. So we use the solve() function. By looking at our decision tree we
see that the different branches are independent from each other. This is an important
and necessary condition for the parallelization strategy.

2.2.1 Windows* 32 Threading API

The sample code can be found in: ..\NQueens\nq-win32api-intel\

A “classic” parallel implementation of the Nqueens algorithm would make use of a
native threading like the Windows* 32 API. The main advantage of the API approach
is that the user has more control and power over threading with C++ than with any
other languages. But the amount of code it takes to implement a given solution is of
course much higher as the programmer has to implement all the thread handling
which in the other cases are handled by the runtime. Therefore this approach is
sometimes referred to as the assembly language for threading. You are more flexible
in assembly language, but you could get what you want much faster in a high level
language with results that were as good or at least good enough. Also the number of
cores which influences the number of created threads has to be determined. This is
not so easy if you have a platform- independent solution in mind. This sample code
guide is too short to teach the threading API so we provide only a very rough idea of
the underlying method. First of all we have to create a thread local storage to store
the thread specific information like which part of the loop to work on. This is done in
struct _thr_params:

// Thread local data structure that will

//contain iteration range and message to print out

Sample Code Guide 17

Parallelizing N-Queens with Intel® Parallel Composer

struct _thr_params {

 size_t start;

 size_t end;

 int *queens;

 std::string msg;

};

typedef struct _thr_params thr_params;

The next thing is to identify the portions of code to thread. This is of course still the
module setQueens(). So we have to implement a driver function to coordinate the
work of the multiple threads. This is done in run_threaded_loop().

void run_threaded_loop (int num_thr, size_t size, int _queens[]) {

 HANDLE* threads = new HANDLE[num_thr];

 thr_params* params = new thr_params[num_thr];

 for (int i = 0; i < num_thr; ++i) {

 // Give each thread equal number of rows

 params[i].start = i * (size/num_thr);

 params[i].end = params[i].start + (size/num_thr);

 params[i].queens = _queens;

 // Pass argument-pointer to a different

 // memory for each thread's parameter to avoid data

races

 threads[i] = CreateThread (NULL, 0, run_solve,

 static_cast<void *> (¶ms[i]), 0, NULL);

 }

 // Join threads: wait until all threads are done

 WaitForMultipleObjects (num_thr, threads, true, INFINITE);

 // Free memory

 delete[] params;

 delete[] threads;

}

The next part is to encapsulate the code we like to run in parallel into a new function
which we call run_solve(). Every instance of run_solve has its own local data for
the start and end point of the loop indices.

// Worker thread function (to be executed by each thread in parallel)

DWORD WINAPI run_solve (void* param)

{

 // Retrieve arguments passed to this thread: param is a pointer

to

 // void, static_cast converts this to a pointer to thr_params

18

Parallelizing the Solution

 thr_params* params = static_cast<thr_params*> (param);

 // Print messages

 for (size_t i = params->start; i < params->end; ++i) {

 // create separate array for each recursion

 setQueen(new int[size], 0, i);

 }

 return 0;

}

Of course we also have to enable correct programming structures for avoiding race
conditions which look very similar to the OpenMP* and Intel® TBB approach:

CRITICAL_SECTION lock;

CRITICAL_SECTION plock;

By comparing the different solutions it’s obvious by just looking at the pure number of
source lines that the threading API approach is the most complex method with more
pitfalls and opportunities to make an error. But it is also of course the approach with
the most freedom and control over the implementation. It would also be nice to
implement a clever way to automatically determine the number of cores to choose the
right number of threads. In Intel® TBB and OpenMP* this is done automatically. So
the threading API approach which we use can easily lead to an over-subscription
(more threads than cores) or under-subscription (less threads than cores) when
moving the executable to a different machine. Using more threads than cores would
look like this in the Intel® Thread Profiler:

Sample Code Guide 19

Parallelizing N-Queens with Intel® Parallel Composer

The blue bar means oversubscription and leads directly to a performance degradation.
This is also left as an exercise for the user together with the task to get rid of the
yellow synchronization bars.

2.2.2 Parallelizing with __task and __taskcomplete

The sample code can be found in: ..\NQueens\nq-parexp-intel\

The Intel® Compiler uses newly added C/C++ language extensions to make parallel
programming easier. There are four keywords introduced within this version of the
compiler: __taskcomplete, __task, __par, and __critical. These keywords are
used as statement prefixes. In order for the application to benefit from the
parallelism afforded by these keywords, you must use the /Qopenmp compiler option
during compilation. The compiler will link in the appropriate runtime support libraries,
and the runtime system will manage the actual degree of parallelism. The parallel
extensions utilize the OpenMP* 3.0 runtime library, but abstract out the use of the
OpenMP* pragmas and directives, keeping the code more naturally written in C or
C++.

We can parallelize the function, solve(), using __par. This prefix allows us to modify
the function for parallel processing. Assuming that there is no overlap among the
arguments, the solve() function is modified with the addition of the __par keyword.
With no change to the way the function is called, the computation is parallelized. This
will look like this:

20

Parallelizing the Solution

void solve() {

 __par for(int i=0; i<size; i++) {

 // try all positions in first row

 // create separate array for each recursion

 // started here

 setQueen(new int[size], 0, i);

 }

}

The sample uses the __par directive to parallelize the loop by simply putting the
macro in front of the loop. If we run our program several times we see that the results
are different and it seems we have introduced some kind of error in our program by
using the __par. This is one of the most common problems in parallel programming
and is called a race condition. In this circumstance, multiple threads will each operate
on a particular block of code, but the overall outcome of the execution is dependent
upon which thread reaches the block of code first. In our example, two processes each
increment the value of nrOfSolutions by 1 if they found a valid solution.

This consists of three distinct operations:

• Load the value of the nrOfSolutions into a register.

• Add 1 to the value in the register.

• Write the contents of the register back into the variable nrOfSolutions.

It is clear that if the two processes each operate one after the other, the final value of
nrOfSolutions after both processes complete will be equal to the initial value plus 2.
Another possible outcome, however, is that the first process could complete the first
two steps outlined above, and then that process could be preempted by the second
process. The second process would read the value of nrOfSolutions as for instance
6, increment it to 7, and then write it back to the variable nrOfSolutions. Once the
first process resumes, it would continue where it left off, writing 6 back as the value of
nrOfSolutions. Thus, in the first case, the code generates a final value of 7 for
nrOfSolutions, and in the second case, the same code generates a final value of
nrOfSolutions for X. Which result would be generated by any particular execution of
the code could be unpredictable. This effect comes into play as we move from a serial
program flow to a parallel program flow and is caused by the fact that all threading
approaches communicate via the shared memory.

Since detection of race conditions by code inspection is not feasible for non-trivial
code, there are tools to help with this task: One way is to instrument the code,
execute it with test data and log possible race conditions, for example with the Intel®
Thread Checker. Another approach is to flag such conditions during debugging of a
desired code path. Intel® Parallel Composer includes the Intel® Parallel Debugger
Extension that extends the Microsoft® Visual Studio Debugger with capabilities that
facilitate tracking down problems typical for threaded code.

Sample Code Guide 21

Parallelizing N-Queens with Intel® Parallel Composer

A solution to this problem is to intercept a race condition introduced by the concurrent
behavior of the algorithm by protecting the counter for the solutions by a mutual
exclusion construct like _critical. This will of course slow down the execution a little

bit as we serialize the program flow but we will get the right solution. The final code
would look like this:

__critical

{

 // increasing the solution counter is not atomic

 nrOfSolutions++;

}

2.2.3 Starting with OpenMP* 3.0

The sample code can be found in: ..\NQueens\nq-openmp-intel\

OpenMP* is an industry standard for portable multi-threaded application development.
This approach is effective at fine-grain (loop-level) and large-grain (function-level)
threading. OpenMP* directives provide an easy and powerful way to convert serial
applications into parallel applications, enabling potentially big performance gains from
parallel execution on multi-core and symmetric multiprocessor systems. The original
source is compiled unmodified. Although directives are inserted into the code, when
no action is taken on them (for example, the application is not running in shared
memory parallel mode) they do not change the program. For shared memory parallel
computers, this allows for simple comparisons between serial and parallel runs.
Because only directives are inserted into the code, it is possible to make incremental
code changes. The ability to make incremental code changes helps programmers
maintain serial consistency. When the code is run on one processor, it gives the same
result as the unmodified source code. OpenMP* is a single source code solution that
supports multiple platforms and operating systems. There is also no need to

22

Parallelizing the Solution

determine the number of cores as the OpenMP* runtime chooses the right number for
you.

The latest OpenMP*, version 3.0, contains a new task-level parallelism construct that
simplifies its use for parallelizing functions, in addition to the loop-level parallelism for
which OpenMP* is most commonly used. In our example we use exactly the same
approach as in the parallel exploration version. The only difference is that the __par

macro is replaced by an OpenMP* pragma with exactly the same functionality.

void solve() {

 #pragma omp parallel for

 for(int i=0; i<size; i++) {

 // try all positions in first row

 // create separate array for each recursion

 // started here

 setQueen(new int[size], 0, i);

 }

}

The important function in our program is the solve function. Solve is easy to
parallelize as the solutions are independent (review the search tree). The sample uses
the OpenMP* #pragma parallel for to parallelize the important loop. By using the

Intel® Parallel Debugger Extension [2] we directly see that the same race condition is
happening here.

We can avoid this shared access by protecting the counter for the solutions with a
mutual exclusion construct like #pragma omp critical or #pragma omp atomic:

#pragma omp atomic

 nrOfSolutions++; // increasing the solution counter is not atomic

There is one distinct advantage of OpenMP* over other typical Windows threading
approaches such as Win32 threads. The pragma based technique allows us to use an
incremental approach to parallelism this means one decides which parts and hotspot
to parallelize and than one can go stepwise through your code and thread wherever it

Sample Code Guide 23

Parallelizing N-Queens with Intel® Parallel Composer

is necessary. Another advantage is that the serial code is don’t destroyed and stays
intact. Furthermore one doesn’t have to care about advanced thread handling as the
OpenMP* runtime automatically does thread pooling whenever possible. Since typical
Windows threading does not use thread pooling, each thread encounters the thread
startup overhead. This can be prohibitive for many applications. In summary OpenMP*
is a flexible and simple set of pragmas, function calls, and environment variables that
explicitly instruct the compiler how and where to thread your application. By taking
advantage of OpenMP* functionality, threading programming is not that much harder
than single-threaded programming.

2.2.4 OpenMP* 3.0 Task queuing

The sample code can be found in: …\NQueens\nq-openmp-taskq\

Sometimes programs with irregular patterns of dynamic data structures or with
complicated control structures like recursion are hard to parallelize efficiently. The
work queuing model allows the user to exploit irregular parallelism, beyond that
possible with OpenMP* 2.0 or 2.5. The task pragma specifies the environment within
which the enclosed units of work (tasks) are to be executed. When a task pragma is
encountered lexically within a task block, the code inside the task block is conceptually
queued into the queue associated with the task. To preserve sequential semantics,
there is an implicit barrier at the completion of the task. The user is responsible for
ensuring that no dependencies exist or that dependencies are appropriately
synchronized, either between the task blocks, or between code in a task block and
code in the task block outside of the task blocks. For our example, this code would
look similar to the following example:

#pragma omp parallel

#pragma omp single

{

 for(int i=0; i<size; i++) {

 // try all positions in first row

 // create separate array for each recursion

 // started here

#pragma omp task

 setQueen(new int[size], 0, i);

 }

}

In our example we only need one task queue therefore we need to set up the queue
only by one thread (omp single). The setQueens calls are independent of each others
and therefore they fit nicely into the task concept. With the Intel® Parallel Debugger
Extension in Visual Studio, you can easily inspect the state of tasks, teams, locks,
barriers, or taskwaits in your OpenMP* program in dedicated windows:

24

Parallelizing the Solution

If you want to rule out problems that may have been introduced by threading your
code you can also serialize the execution of the parallel regions without recompilation
by selecting "Serialize parallel regions" from the Intel-specific debug menu.

As a result the subsequent parallel regions in your program will be executed with only
one thread, regardless of the settings of num_threads in your program or in the
environment. For more information about the Intel® Parallel Debugger Extension [2]
please refer to the online help available in Visual Studio*.

2.2.5 Parallelizing with Intel® Threading Building Blocks (Intel®
TBB)

The sample code can be found in: ..\NQueens\nq-tbb-intel\

Intel® Threading Building Blocks (Intel® TBB) offers a rich methodology to express
parallelism in a C++ program. It is a library that helps you take advantage of multi-
core processor performance. It represents a higher-level, task-based parallelism that
abstracts platform details and threading mechanism for performance and scalability.
It nicely fits into the object oriented and generic framework of C++. Intel® TBB uses
a runtime based programming model and provides the user with generic parallel
algorithms based on a template library similar to the standard template library (STL).
The Intel® TBB task scheduler does the load balancing for you. With thread-based
programming, you are often stuck dealing with load-balancing yourself, which can be
tricky to get right. By breaking your program into many small tasks, the Intel® TBB
scheduler assigns tasks to threads in a way that spreads out the work evenly.

For the programmers not used to work with templates here is a very brief introduction
to get you started with Intel® TBB. Templates are programming constructs, which
allow a more generic and data type independent programming. This generic approach
can be combined with overloading and inheritance of operators to reach a very high
level of abstraction and therefore allow powerful parallel design concepts. Templates
are construction skeletons with one or more parameterized types. Templates can be

Sample Code Guide 25

Parallelizing N-Queens with Intel® Parallel Composer

used to create functions (function templates), classes (class templates) and template
itself (template templates). The big advantage of templates in relation to macros is
the type security, which is examined during compile time and thus helps avoids run
time errors. Here is an example of a simple function template to compute the
maximum of two elements:

s

template <typename T>

T max(T x, T y)

{

 if (x < y)

 return y;

 else

 return x;

}

This template is called like a normal function: for example, max(3, 7). The compiler

y
determines the type by looking at the parameters. So this would not only work for
integers but for floating point numbers, strings and even classes. The only necessar
conditions is that compare operator and the copy constructor are defined for the used
data type. The only other thing one needs to know to use Intel® TBB is how functors
work. Functors in C++ are used to work on the elements of a given data structure. A
functor is a class which is used as a function. The class is defined by overloading the
function call operator therefore an operator() member function is defined. A simple
functor would look like this:

#include <list>

#include <algorithm>

#include <iostream>

struct Sum {

 double sum;

 Sum():sum(0.0) {}

 void operator()(const double & d) { sum += d; }

};

std::list<double> myList;

…

Sum mySum = std::for_each(myList.begin(), myList.end(), Sum());

std::cout << “Summe “ << mySum.sum << std::endl;

The class sum is doing the summation. The constructor is initialized with zero. The

lt is

operator() is defined to add another value. The class is used together with the
for_each statement to call the operator() for every element in MyList. The resu
returned by for_each and the result is placed in mySum.sum. This methodology already
used in C++ is extended by Intel® TBB to realize simple parallelization concepts.
Intel® TBB provides a couple of functions templates like parallel_for,

26

Parallelizing the Solution

parallel_while, parallel_reduce, pipeline, parallel_sort, and para
along with some concurrent containers. In our example we make use of the
parallel_for template. This functor is used to divide the recursive distribution o
data for the parallel tasks up to an arbitrary selectable grain size. For the processing
interval the Intel® TBB class tbb::block_range is used which can be instantiated by
numbers, pointers and random-access iterators. The functor has to work on the whole
range instead on a single element. For the solve loop, the sample implements the
parallel_for template function. The first parameter of the call is a blocked_range
object that describes the iteration space. The constructor takes three parameters
lower and upper bound of the range and the <grainsize>. The parallel_for
subdivides the range into sub-ranges that have approximately <grainsize> ele
The second parameter to the parallel_for function is the function object to be applied
to each subrange. So this would look like:

llel_scan

f the

: The

ments.

class SetQueens {

public:

void operator()(const blocked_range<size_t>& r) const {

 for(size_t i=r.begin(); i!=r.end(); ++i) {

 // try all positions in first row

 // create separate array for each recursion

 // started here

 setQueen(new int[size], 0, (int)i);

 }

}

void solve() {

 parallel_for(blocked_range<size_t>(0, size, 1), SetQueens());

}

As in the OpenMP* sample, this sample attempts to protect the solution counter by
the mutual exclusion construct NrOfSolutionsMutexType:

if(row==size-1) {

 {

 // increment is not atomi , so settc ing a lock is required here

 NrOfSolutionsMutexType::scoped_lock mylock(NrOfSolutionsMutex);

 nrOfSolutions++;

 }

// closing block invokes scoped_lock destructor which releases the lock

}

There are of course more and clever ways to implement this in Intel® TBB. For
ional

calculate the speedup in comparison to the serial version.

instance a reduce operation can be used but this is left to the reader as an addit
exercise. An interesting question is if the parallelization really is efficient and scalable.
One method is to look at the runtime and divide it by the number of threads to

Sample Code Guide 27

Parallelizing N-Queens with Intel® Parallel Composer

The disadvantage of this approach is that one gets no insight into the parallel
problem. The Intel® Thread Profiler allows interesting insight into the real parallel
execution of the concurrent flow graph. It works for all featured approaches. Here is
the view of the Intel® TBB runtime.

The two green bars show that our solution is well balanced but with a lot of
synchronization overhead which is caused by synchronizing the access to the global
variable which counts the number of solutions. It is crucial to all parallelization

ximal

ple it

tion we just
have to implement a local solution variable for each thread. At the end of the program

e

approaches to validate and verify that the used approach is providing the ma
performance by avoiding slowdowns caused by serialization. (See Amdahl’s law on
how serial parts of a program can affect the parallel performance.) In our exam
is pretty straightforward to get rid of this unnecessary synchronization.

Every time we add a number to the solution counter we have to synchronize this
access, as it is a global variable for all threads. To avoid this synchroniza

we simply sum up the local solution variables to the global one. The resulting cod
run should look similar to the results shown below:

28

Parallelizing the Solution

2.2.6 Using lambda Functions with Intel® TBB

The sample code can be found in: ..\NQueens\nq-tbb-lambda\

Lambda functions have been included in the working draft of the next C++ standard
C++0x. This addition makes STL/Intel® TBB algorithms an order of magnitude more
usable then in the past. The Intel® Compiler is the first C++ compiler which
implements lambda function. A lambda abstraction in general defines an unnamed
function, so it’s a bunch of code without a name. Lambda functions together with
closures are a powerful concept because they combine code with a scope. The
characteristic of this construct is that it ties a scope to a code block which than can be
passed around and the scope doesn't change for the particular block it is tied to. The
term used in the standard is "capture" (of an auto), and an auto can be captured by
value or reference. A closure is a function that can refer to and alter the values of
bindings established by binding forms that textually include the function definition. A
lambda construct is almost the same as a function object in C++ or a function pointer
in C. A closure then can be seen as a pointer to a function and a pointer to a set of
name/variable bindings. Finally a lambda function together with a closure can be seen
as a lot of syntactic sugar around function objects and function pointers. This syntactic
sugar is intended to be a convenient way to write function objects or lambdas right at
the point of use.

Sample Code Guide 29

Parallelizing N-Queens with Intel® Parallel Composer

30

This section explains in some detail about using of C++ Lambda expressions. In order
to use Intel's implementation of lambda expressions, you need to request C++0X with
the command-line option /Qstd that is: /Qstd=c++0X. The compiler creates an
anonymous function object upon evaluating a lambda expression. This function object,
created by a lambda expression, may live longer than the block in which it is created.
You must ensure that it does not use variables that were destroyed before the
function object is used.

The following example shows how a function object created by a lambda expression
will look like in the context of the Nqueens example. Tighter C++ and Intel® TBB
integration allows the simplification of the functor operator() concept by using lambda
functions and closures to pass code as parameters:

void solve() {

 parallel_for(blocked_range<size_t>(0, size, 1),

 [](const blocked_range<int> &r){

 for (int i = r.begin(); i != r.end(); ++i) {

 setQueen(new int[size], 0, (int)i);

 };

 });

}

3 Comparing the Different Methods

Let’s finally summarize the parallelization approaches of the different methods like
API-based threading methods (the Win32 multithreading API on Windows* OS and the
Pthreads library on Linux* OS), OpenMP* and Intel® TBB. We can characterize them
by different means. One is the mean of abstraction another one is a mean of control
and the last one is a mean of simplicity. We have shown in our example that in
exchange for giving up a little flexibility, you get parallelism into your application
faster with less impact on your code. This makes you more productive. The
Windows* 32 API is the assembly language of parallelism, whereas OpenMP and TBB
are the high level languages of parallelism. Depending on your preferences you should
now able to decide which method is best for your application. Here are the key
characteristics for the various methods.

The API based models are very general; they require the programmer to manually
map concurrent tasks to threads. There is no explicit parent-child relationship between
the threads; all threads are peers. These models give the programmer control over all
low-level aspects of thread creation, management, and synchronization. This flexibility
is the key advantage of library-based threading methods. The price of this flexibility is
significant code modifications and obviously a lot more coding. Concurrent tasks must

Comparing the Different Methods

Sample Code Guide 31

be encapsulated in functions that can be mapped to threads. The other important
thing is that most threading API’s use arcane calling convention and only accepts one
argument so it is often necessary to modify function prototypes and data structures,
this may break the abstraction of the program design and fits better in a C than an
Object-oriented C++ approach.

OpenMP*, a compiler-based threading method, provides a high-level interface to the
underlying thread libraries. With OpenMP*, the programmer uses pragmas (or
directives in the case of Fortran) to describe parallelism to the compiler. This removes
much of the complexity of explicit threading methods because the compiler handles
the details. Due to the incremental approach to parallelism where the serial structure
of the application stays intact there are no significant source code modifications
necessary. A non OpenMP* compiler simply ignores the pragmas, leaving the
underlying serial code intact. However, much of the fine control over threads is lost.
Among other things OpenMP* does provide the programmer with a way to set thread
priorities or perform event-based or inter-process synchronization. OpenMP* is a fork-
join threading model with an explicit master-worker relationship among threads. This
narrows the range of problems for which OpenMP* is suited. In general, OpenMP* is
best suited to expressing data parallelism while explicit threading API methods are
best suited to functional decomposition. OpenMP* is well known to work perfect with
loop structures and C code but does not have specific support for C++. OpenMP* 3.0
which includes the task construct, extends OpenMP* by adding support for irregular
constructs such as while loops and recursive structures, and function-level parallelism,
which is a big improvement.

The Intel® Threading Building Blocks library supports generic scalable parallel
programming using standard C++ code like the Standard Template Library (STL). It
does not require special languages or compilers. If one needs a flexible high level
parallelization approach which fits nicely in an abstract and even generic object
oriented approach then Intel® TBB is the right and only choice. Intel® TBB uses
templates for common parallel iteration patterns. Intel® TBB supports scalable data
parallel programming with nested parallelism. In comparison to the API approach one
specifies tasks, not threads, and let the library map tasks onto threads in an efficient
way using the Intel® TBB runtime. The Intel® TBB scheduler favors a single,
automatic, divide-and-conquer approach to scheduling. It implements task stealing
which moves tasks from loaded core to idle ones. In comparison to OpenMP* the
generic approach implemented in Intel® TBB allows the user to work with user
defined parallelism structures which are not limited to built-in types. Finally combining
TBB with lambda functions will reduce the amount of code rearrangement required
and will add another level of abstraction to your parallel approach.

The __task/__taskcomplete extensions can be used in C and C++, even for novice
users that want to do some rapid prototyping to get a start on threading. OpenMP*
has more features than this simple tasking, and is oriented towards compute-intensive
algorithms. These new tasking features are a quick and easy entry into asynchronous
programming.

Parallelizing N-Queens with Intel® Parallel Composer

32

4 Conclusion

Intel® Parallel Composer provides some unique new methods to express parallelism in
C++ applications. Each has unique benefits for different use-cases. As you have
seen in this sample code guide, some simple modifications to implement OpenMP* or
parallel spawn/finish, or Intel® TBB can lead to some impressive performance and
scaling gains through multi-threading.

Many algorithms contain optimizations that benefit from serial execution but introduce
dependencies that inhibit parallelism. It is often possible to remove such dependencies
through simple transformations to make use of any of the above mentioned
approaches. It is important to choose an appropriate number of threads to minimize
overhead due to thread creation. Creating too many threads hurts performance for
many reasons, including increased system overhead, decreased granularity, increased
lock contention. In order to avoid race conditions during the execution of a threaded
application, mutual exclusion to shared resources is required to allow a single thread
to access and change the state of shared resources. The shared resource can be a
data structure, or memory in the address space. Minimizing synchronization
overheads is a critical to application performance.

Experiment with the sample code provided with the Intel® Parallel Composer. Refer to
the product documentation or product website for more information:
HUhttp://www.intel.com/software/products/ UH.

4.1 9BReferences
[1] Hoffman, E.J., Loessi, J.C. and Moore, R.C. (1969): Constructions for the Solution
of the m Queens Problem, Mathematics Magazine, p. 66-72.
[2] Robert Mueller-Albrecht (2008): Intel® Parallel Debugger Extension
http://software.intel.com/en-us/articles/parallel-debugger-extension.

	Disclaimer and Legal Information
	Contents
	1 Introduction
	1.1 N-Queens Samples
	1.1.1 Locating the Samples

	1.2 The Problem
	1.2.1 Problem Analysis
	1.2.2 Algorithm

	2 Parallelizing the Solution
	2.1 The Serial “Solver” Function
	2.1.1 Standard Template Library (STL) Solution
	2.1.2 Serial Solution

	2.2 Parallelizing the “Solver”
	2.2.1 Windows* 32 Threading API
	2.2.2 Parallelizing with __task and __taskcomplete
	2.2.3 Starting with OpenMP* 3.0
	2.2.4 OpenMP* 3.0 Task queuing
	2.2.5 Parallelizing with Intel® Threading Building Blocks (Intel® TBB)
	2.2.6 Using lambda Functions with Intel® TBB

	3 Comparing the Different Methods
	4 Conclusion
	4.1 References

