

Effects of Fragmentation on Post-Inflationary Reheating

Mathieu Gross, COSPT 2024 meeting, 01/02/2024

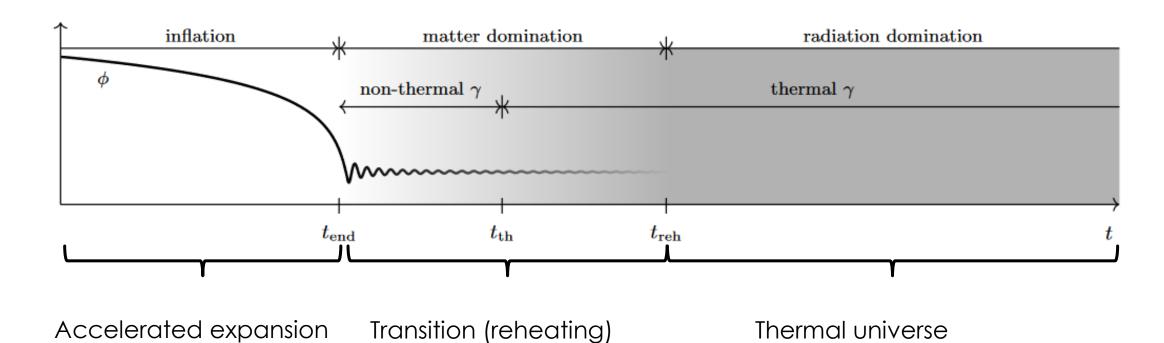
Based on

arXiv:2308.16231v1 with M. A. G. Garcia, Y. Mambrini, K. A. Olive, M. Pierre, and J.-H. Yoon

Content

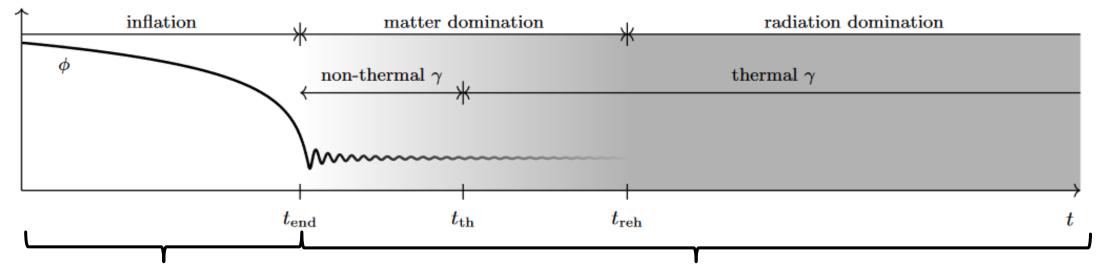
- Introduction: The standard reheating
- What is fragmentation?
- Numerical result and implications

Introduction



arXiv:1806.01865v2 [hep-ph] 17 Dec 2018

Introduction



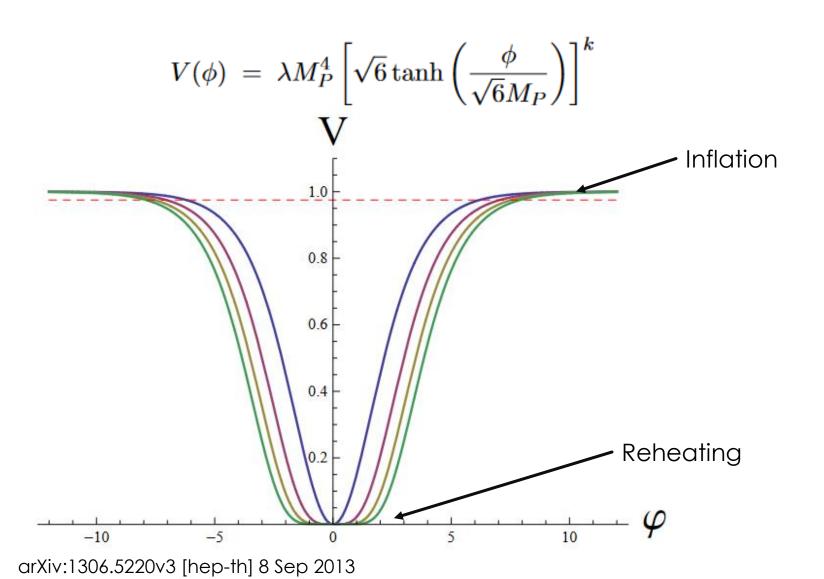
$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right)$$

 ϕ Is a classical field

Production of particles/Dark matter

$$\mathcal{L} \supset egin{cases} y\phiar{f}f & \phi
ightarrow ar{f}f \ \mu\phi bb & \phi
ightarrow bb \ \sigma\phi^2b^2 & \phi\phi
ightarrow bb \end{cases}$$

Introduction



$$\lambda = \frac{18\pi^2 A_s}{6^{k/2} N_*^2}$$

\boldsymbol{k}	λ			
4	3.42×10^{-12}			
6	5.70×10^{-13}			
8	9.51×10^{-14}			
10	1.58×10^{-14}			

Reheating the cosmological equations

Equation of motion for the homogeneous field

$$\ddot{\phi} + 3H\dot{\phi} + n\lambda m_{pl}^{4-k}\phi^{k-2}\phi = 0$$

$$\dot{\rho_{\phi}} + 3H(1+w_{\phi})\rho_{\phi} = -(1+w_{\phi})\Gamma\rho_{\phi}$$

Friedman's equations:

$$\dot{
ho_R}+4H
ho_R=(1+w_\phi)\Gamma
ho_\phi$$

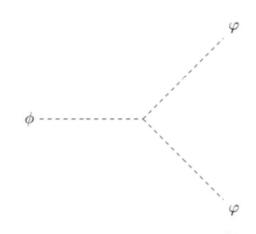
$$H^2=rac{
ho_R+
ho_\phi}{3m_{pl}^2}$$

$$w_{\phi} = \frac{P_{\phi}}{\rho_{\phi}} = \frac{k-2}{k+2}$$

Equation of state parameter:

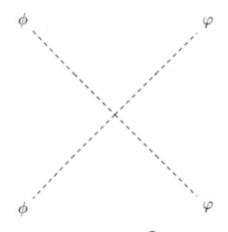
Reheating the microphysics

$$\mathcal{L} \supset -\mu \phi \varphi^2 - \sigma \phi^2 \varphi^2 - y_{\psi} \overline{\Psi} \Psi \phi$$



$$\Gamma^{1 \to 2} \simeq \frac{m_\phi}{8\pi} \left(\frac{\mu_{\rm eff}}{m_\phi}\right)^2$$

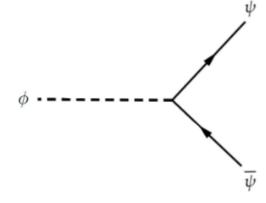
Decay to bosons



$$\Gamma^{2 o2}\simeqrac{\sigma_{
m eff}^2\,
ho_q}{8\pi\,m_d^3}$$

Scattering to bosons

arXiv:2012.10756v2 [hep-ph] 7 Apr 2021



$$\Gamma_{\phi \to \overline{\Psi}\Psi} = \frac{y_{\text{eff}}^2}{8\pi} m_{\phi}$$

Decay to fermions

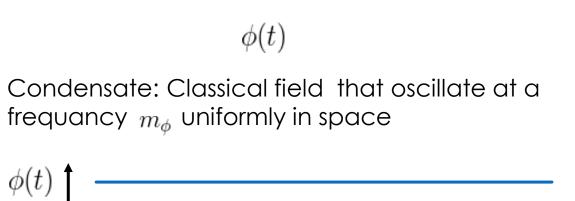
Solving the reheating

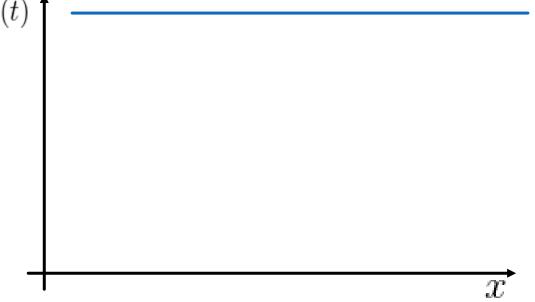
$$\rho_{\phi} = \rho_{end} \left(\frac{a_{end}}{a}\right)^{\frac{-6k}{k+2}} \longrightarrow \rho_{R} = \frac{1 + \omega_{\phi}}{a^{4}} \int dl n(a) \frac{\Gamma \rho_{\phi} a^{4}}{H}$$

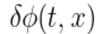
Define the reheating time : $ho_R(a_{RH}) =
ho_\phi(a_{RH})$

Define the reheating Temperature: $T_{RH} \sim \rho_R (a_{RH})^{\frac{1}{4}}$

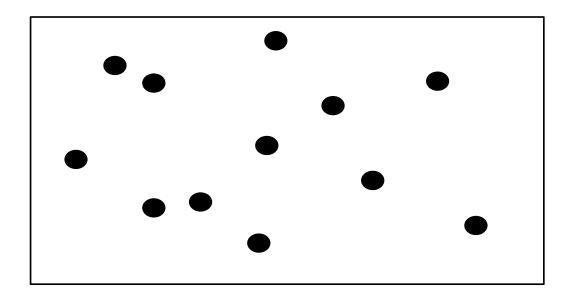
The issue of fluctuation







Particle: Non homogeneous quantum field (usual particles)



What is fragmentation?

$$\phi(t,x) = \bar{\phi}(t) + \delta\phi(t,x) \quad \longrightarrow \quad V(\phi) = \lambda M_{pl}^{4-k} \sum_{l=1}^k \binom{k}{l} \phi^{k-l} \delta\phi^l \quad \text{Introduce new couplings !}$$

New EOM:

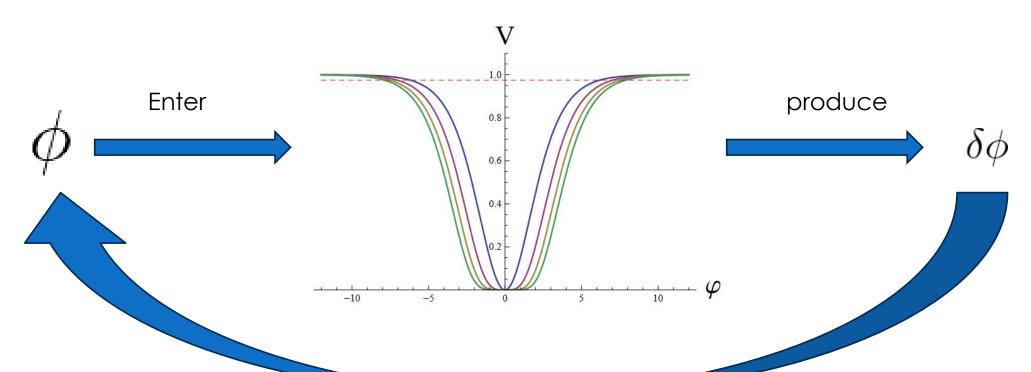
$$\ddot{\phi} - \frac{\Delta\phi}{a^2} + 3H\phi + V_{,\phi}(\phi) = 0 \quad \Longrightarrow \quad \ddot{\delta\phi} + 3H\dot{\delta\phi} - \frac{\nabla^2\delta\phi}{a^2} + k(k-1)\lambda M_P^2 \left(\frac{\phi(t)}{M_P}\right)^{k-2} \delta\phi = 0 \quad \text{Up to first order}$$

Valid until: $\delta\phi\sim\phi$ after that we need to solve the full non-linear dynamics

Fragmentation is the moment when the perturbation energy density take over the inflaton energy density.

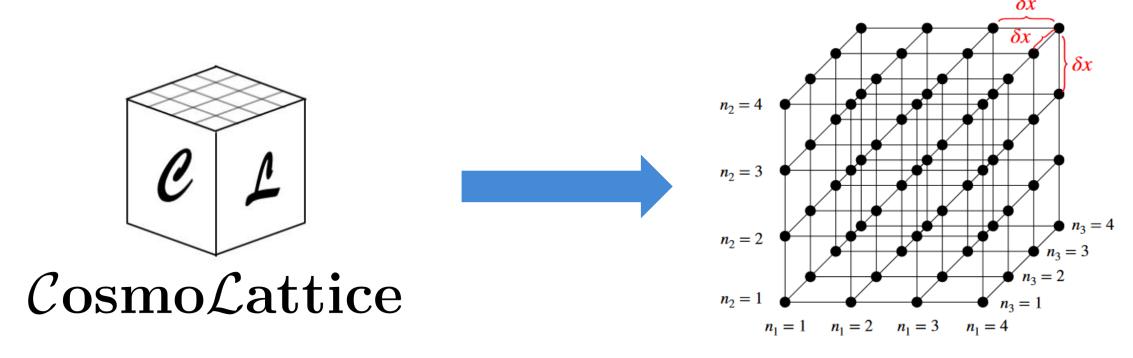
$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^{2} + \frac{1}{2a^{2}}(\nabla\phi)^{2} + V(\phi) \qquad \rho_{\bar{\phi}} = \frac{1}{2}\dot{\bar{\phi}}^{2} + V(\bar{\phi}) \qquad \rho_{\phi} = \rho_{\bar{\phi}} + \rho_{\delta\phi}$$

What is fragmetation



Backreact and destroy

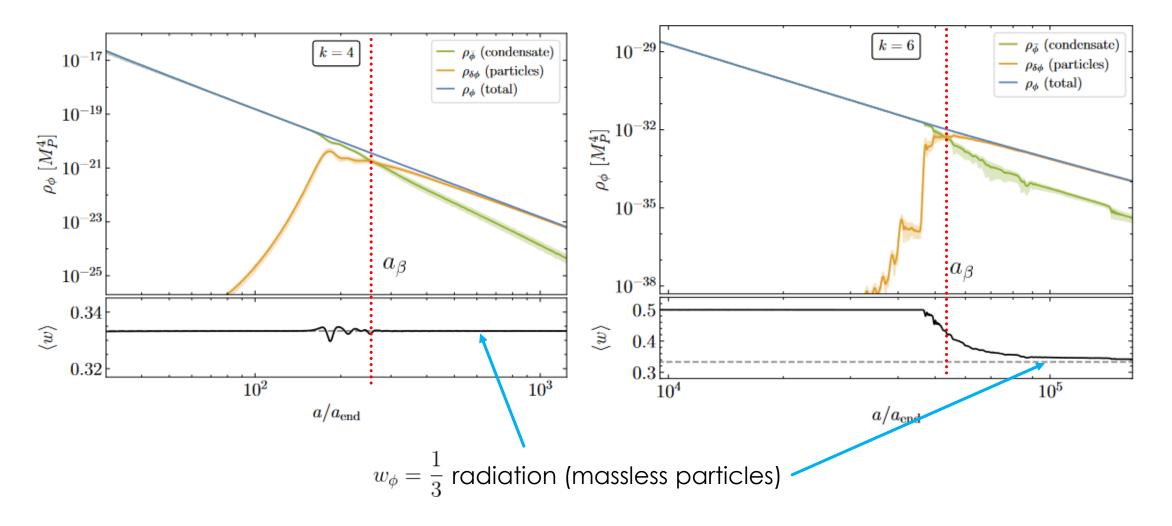
Numerical Simulation



User Manual: arXiv:2102.01031v2
Review of the simulation techniques: arXiv:2006.15122v3

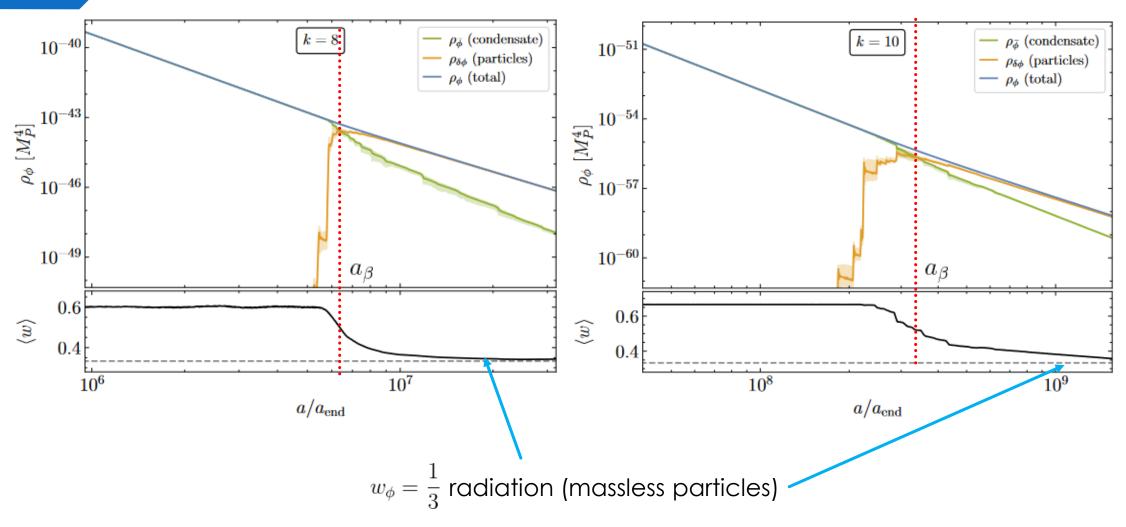
The following numerical results only take into account the self motion of the inflaton field

Simulation result



Energy density and equation of state parameter as a function of the scale factor for various power of the potential

Simulation result



Energy density and equation of state parameter as a function of the scale factor for various power of the potential

How to avoid fragmentation

$$\begin{split} \dot{\rho_{\phi}} + 3H(1+w_{\phi})\rho_{\phi} &= -(1+w_{\phi})\Gamma\rho_{\phi} \\ \dot{\rho_{R}} + 4H\rho_{R} &= (1+w_{\phi})\Gamma\rho_{\phi} \\ H^{2} &= \frac{\rho_{R} + \rho_{\phi}}{3m_{nl}^{2}} \end{split} \qquad \qquad \bullet \bullet \quad \qquad \\ & \Gamma_{\phi} = \begin{cases} \frac{y_{\text{eff}}^{2}(k)}{8\pi}m_{\phi}(t) & \phi \to \bar{f}f \\ \frac{\mu_{\text{eff}}^{2}(k)}{8\pi m_{\phi}(t)} & \phi \to bb \\ \frac{\sigma_{\text{eff}}^{2}}{8\pi}\frac{\rho_{\phi}(t)}{m_{\phi}^{3}(t)} & \phi\phi \to bb. \end{cases}$$

Solve and require to reheat before fragmentaion

k	$y_{ m eff}$	$\mu_{ ext{eff}}$	$\sigma_{ m eff}$	$T_{ m RH}$
		$3.57 \times 10^{10} \text{ GeV}$		
6	1.58×10^{-2}	$1.84\times 10^5~{\rm GeV}$	5.37×10^{-10}	$1.19 \times 10^{10} \; \mathrm{GeV}$
8	1.32×10^{-3}	$6.33\times 10^{-1}~{\rm GeV}$	9.59×10^{-15}	$1.50 \times 10^7 \text{ GeV}$
10	3.62×10^{-5}	$6.33 \times 10^{-1} \text{ GeV}$ $1.49 \times 10^{-6} \text{ GeV}$	6.47×10^{-20}	$1.80 \times 10^4 \text{ GeV}$

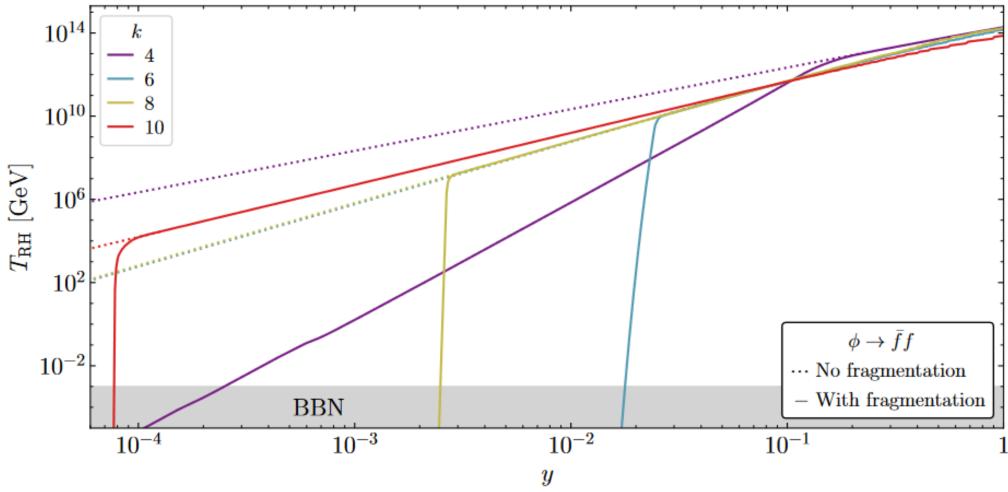
Problematic?

Depending on the potential what are the allowed processes to produce matter in the early universe?

$$V(\phi) \implies \mathcal{L}_{int}$$
?

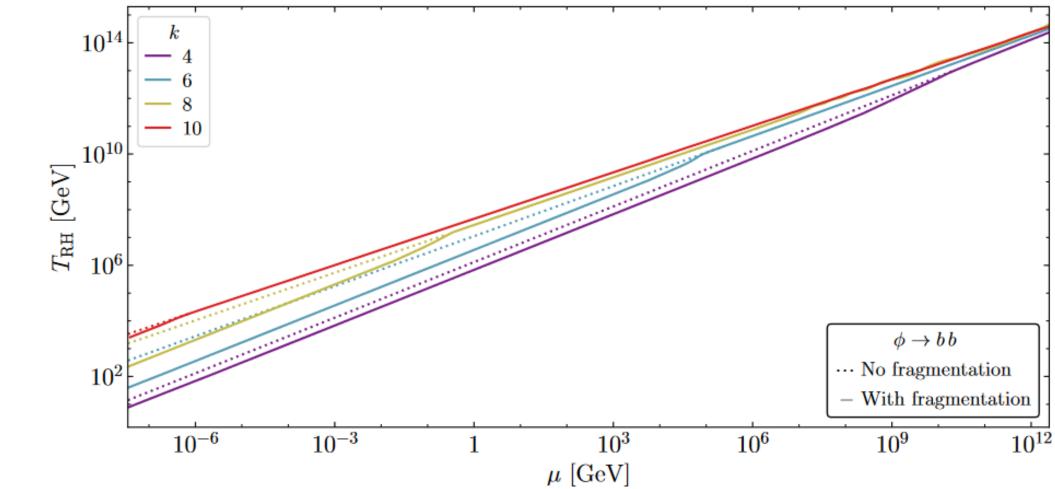
We define the energy ratio: $\xi \equiv \frac{\rho_{\bar{\phi}}}{\rho_{\delta \phi}}$ and compute the remaining energy tranfert using latice data.

$$\phi \to \bar{f}f \qquad T_{\text{RH}}^{(\beta)} = \left(\frac{30}{g_{\rho}\pi^{2}}\right)^{\frac{1}{4}} M_{P}(\sqrt{3}c_{k}\xi^{\frac{k-2}{k}})^{\frac{k+2}{12(6-k)}} \left(\frac{\rho_{\text{end}}}{M_{P}^{4}}\right)^{\frac{2k^{2}-12k+16}{12k(k-6)}} \beta^{-\frac{(k-2)(k-4)}{(k+2)(k-6)}}
\phi \to bb \qquad T_{\text{RH}}^{(\beta)} = \left(\frac{30}{g_{\rho}\pi^{2}}\right)^{\frac{1}{4}} M_{P}\left(\sqrt{3}\frac{\mu^{2}}{8\pi c_{e}M_{P}^{2}}\right)^{\frac{1}{3}}
\phi \phi \to bb. \qquad T_{\text{RH}}^{(\beta)} = M_{P}\left(\frac{30}{g_{\rho}\pi^{2}}\right)^{\frac{1}{4}} \left(\frac{\sigma^{2}\tilde{c}\sqrt{3}}{8\pi}\right)$$



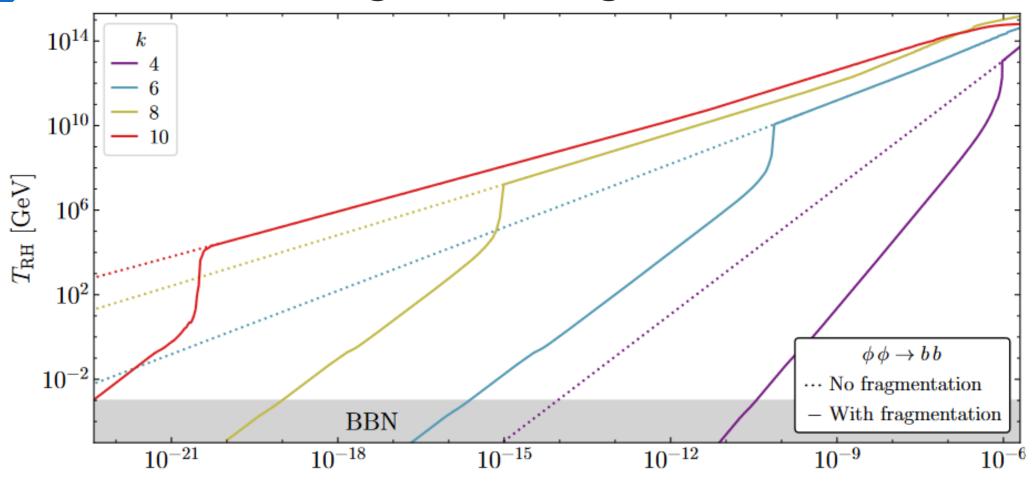
Reheating temperature as a function of the coupling for various power of the potential

Fragmentation exclude reheating via decay to fermion if k>2



Reheating temperature as a function of the coupling for various power of the potential

There is no fragmentation problem for decay to boson.



Reheating temperature as a function of the coupling for various power of the potential

Fragmentation has an important effect for the bound on the minimum value required for the coupling

Conclusion

Non linearities in the early universe can produce a massive amount of perturbation leading to radiation dominated universe.

The pertubations affects the processes that produce matter and add constrains for reheating to happend in a specific way depending on the model Thank you!

Backup slides

All from: arXiv:2308.16231v1

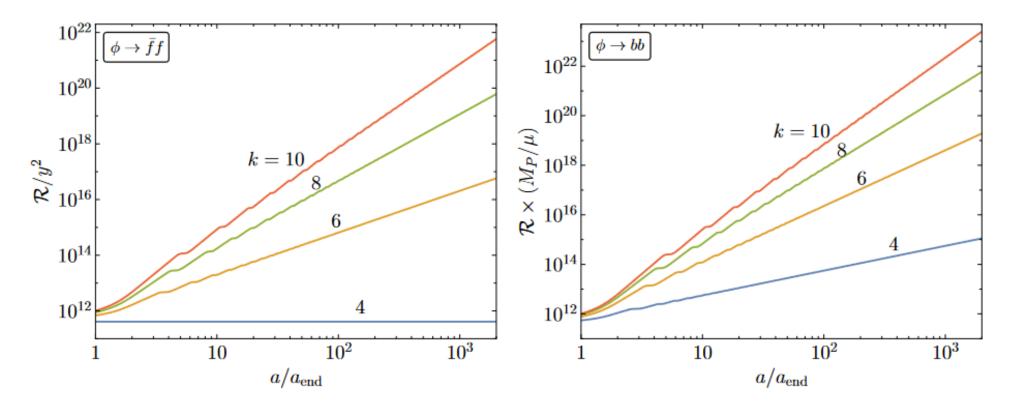


Figure 2: Kinematic parameter \mathcal{R} as a function of the scale factor, for k=4,6,8,10. Left: fermionic decays. The channel $\phi\phi \to bb$ can be recovered from these results upon changing $y^2 \to 2\sigma$. Right: bosonic decays.

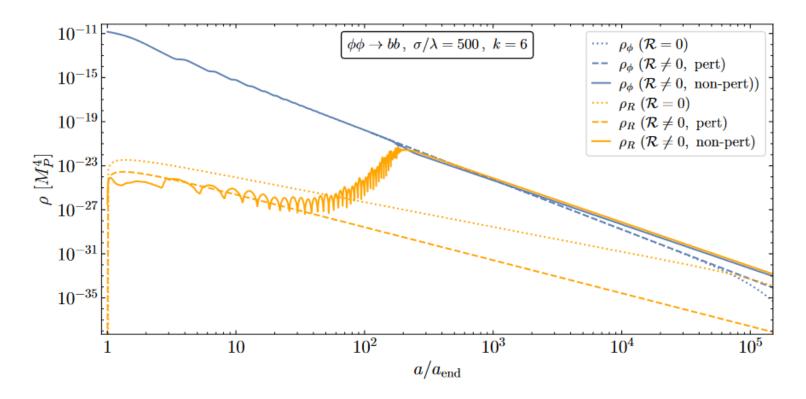


Figure 3: Dependence on the induced mass m_{eff} of the inflaton and radiation energy densities, for the $\phi\phi \to bb$ decay channel. The solid lines are computed by matching results using the Hartree approximation prior to strong parametric resonance to results from a lattice simulation for the backreaction regime.