New applications of SRF technology, recent progresses and future capabilities

Akira Miyazaki & David Longuevergne Séminaire Pôle accélérateurs

Cross the border from accelerators

Outline

Almost all are my own original studies...only partly published

- New superconductors for SRF accelerators 1 GHz
- Axion dark matter and dark photons 20-30 GHz
- Gravitational waves: storage ring 500 MHz
- Paul trap (35 MHz) for anti-hydrogen
- Relic neutrino via 28 GHz

With SPring-8

Not covered by this talk

Outline

- New superconductors for SRF accelerators
- Axion dark matter
- Gravitational waves

Beyond Nb for sustainability and higher performance

- Niobium material (RRR=300) is getting more and more expensive
 - Over 20 times more expensive than copper
- Nb cavities are typical operated in 2K Liquid helium
 - Crisis in He supply
 - Very expensive cryogenic infrastructure
- On-going researches
 - Nb-coating on copper substrates
 - Nb_3Sn on Nb to be operated at 4K
 - Cryocooler
 - Nb₃Sn on Cu
 - NbTiN, MgB₂, multi-layer, etc...
- Another point: HTS market is growing
 - Magnet, cavity, detector communities
 - Does HTS have any potential for the particle accelerator application?

Material	$\lambda(T=0)$	$\xi(T=0)$	$\mu_0 H_{sh}$	T_c	Δ/k_BT_c
	[nm]	[nm]	[mT]	[K]	
Nb	50	22	219	9.2	1.8
Nb ₃ Sn	111	4.2	425	18	2.2
MgB ₂	185	4.9	170	37	0.6-2.1
NbN	375	2.9	214	16	2.2

S. Posen PhD thesis

Beyond Nb for sustainability and higher performance

- Niobium material (RRR=300) is getting more and more expensive
 - Over 20 times more expensive than copper
- Nb cavities are
 Crisis in He st 2K Liquid helium Nb₃Sn Bulk Nb • Very expensive cryogonic infractructur • On-going resea • Nb-coating or $R_{BCS} = A(\lambda, \xi, l, v_F) \cdot \frac{\omega^2}{T} \cdot \exp\left(\frac{\omega^2}{T}\right)$ A.-M. Valente-Feliciano et al • Nb₃Sn on Nb⁺ • Cryocooler Nb 50 22 219 9.2 1.8 • Nb₃Sn on Cu Nb₃Sn 111 4.2 425 18 2.2 4.9 MgB₂ 185 170 37 0.6 - 2.1• NbTiN, MgB₂, multi-layer, etc... MgB₂ NbN 375 2.9214 16 2.2

T. Tajima et al

30kU X10,000

EPAC2006 MOPCH178

1 Mm

Al₂O₃-C

10 22 SE1

S. Posen PhD thesis

- Another point: HTS market is growing
 - Magnet, cavity, detector communities
 - Does HTS have any potential for the particle accelerator application?

Three different families of superconductors

Year

Optical conductivity in the Meissner state

$$\sigma_1 = \frac{2\sigma_n}{\hbar\omega} \int_0^\infty [f(\epsilon) - f(\epsilon + \hbar\omega)] [\operatorname{Re} G^R(\epsilon) \operatorname{Re} G^R(\epsilon + \omega) + \operatorname{Re} F^R(\epsilon) \operatorname{Re} F^R(\epsilon + \omega)] d\epsilon$$

S. N. Nam, Phys Rev 156 470 (1967)

 $\sim \frac{2\sigma_n}{\hbar\omega} (1 - e^{-\omega/T}) \int_0^\infty e^{-\epsilon/kT} N(\epsilon) N(\epsilon + \hbar\omega) d\epsilon$ J. Halbritter Z. Physik 266 p.209 (1974)

$$E + \hbar\omega \int_{E} - \int_{E} \hbar\omega$$

$$E + \hbar \omega = \frac{1}{E} - \frac{1}{E} \hbar \omega$$

Conventional s-wave (Dynes)

Cuprate d-wave

Pnictide s_{\pm} -wave

$$\frac{N(\epsilon)}{N_0} = \operatorname{Re}\left(\frac{\epsilon + i\delta}{\sqrt{(\epsilon + i\delta)^2 - \Delta_0^2}}\right)$$

 $\Delta_0(T) = \Delta_0 [\cos(\pi T^2 / 2T_c^2)]^{1/2}$

$$\frac{N(\epsilon)}{N_0} = \operatorname{Re}\left(\left|\frac{\epsilon + i\delta}{\sqrt{(\epsilon + i\delta)^2 - \Delta^2(\theta)}}\right|\right)$$

 $\Delta(\theta) = \Delta_0 \cos 2\theta$ P. Coleman "Introduction to Many-Body Physics"

 $\frac{N(\epsilon)}{N_0} = \operatorname{Re}\left(\left|\frac{\epsilon + i\delta}{1-\epsilon}\right|\right)$

1

$$\frac{\epsilon + i\delta}{I_0} = \operatorname{Re}\left(\left|\frac{\epsilon + i\delta}{\sqrt{(\epsilon + i\delta)^2 - \Delta_{\alpha_{1,2},\beta_{1,2}}^2(\phi_{1,2})}}\right|\right)$$

$$\Delta_{\alpha_{1,2},\beta_{1,2}}(\phi_{1,2}) = \Delta_0 \Phi_{\alpha_{1,2},\beta_{1,2}}$$

 $\Phi_{\beta_{1,2}} = \frac{1 + \Phi_{\beta_{min}}}{2} \pm \frac{\left(1 - \Phi_{\beta_{min}}\right)}{2} \cos(2\phi_{1,2})$

 $\Phi_{\alpha_{12}} = -\Phi_a$

<u>Objectives</u>

- Compare the RF loss by thermally excited quasiparticles in the Meissner state for these three families
- Can HTS be useful?

Y. Nagai et al New J. Phys. 10 103026 (2008)

The energy is normalized to $T_c(Nb) = 9.25 \text{ K}$

Assumed parameters:

σ_1 vs *T*: an example ($\omega = 0.02 \sim 900$ MHz)

Best fitting functions

gap-full:
$$\frac{\sigma_1(T)}{\sigma_n} = \frac{A}{T} \exp\left(-\frac{\Delta}{T}\right) + B$$

Gapless: $\frac{\sigma_1(T)}{\sigma_n} = CT^{\alpha} + B$

	Nb	pnictide		cuprate
А	8.67±0.23	23.8 ± 0.81	С	0.0201 ± 0.0003
Δ	2.24 ± 0.01	8.43 ± 0.07	α	2.341 ± 0.015
В	0.0052 ± 0.0003	0.0012 ± 0.0005	В	0.0034 ± 0.00044

Surface resistance $Z_s = \sqrt{\frac{i\omega\mu_0}{\sigma_1 - i\sigma_2}} \xrightarrow{T \ll T_c, \sigma_1 \ll \sigma_2} \sqrt{\frac{\mu_0}{\omega\sigma_2^3}} \left(\frac{1}{2}\sigma_1 + i\sigma_2\right) \rightarrow R_s = \operatorname{Re}(Z_s) = \frac{\mu_0\omega^2\lambda^3}{2}\sigma_1(T)$

The penetration depth is factor 10 longer in HTS than Nb \rightarrow RF field looks more materials \rightarrow more loss

Cuprate SRF cavities for high-Q under B have been realized

 $Q_{YBCO}/Q_{Cu}\approx 6$

03 04 05 06 07 08 09 1 Magnetic Field (T

YBCO

Copper

4.5x10

4.0x10

3.5x10

2 3.0x10

2.5x10

€ 2.0x10⁵ 2 1.5x10

1.0x10

Magnetic Field (T)

4.5x10⁵

4.0x10⁵

3.5x10⁵

0 3.0x10⁵ 2.5x10⁵

Onality 0 1.5x10⁵

1.0x10⁵

5.0x10⁴

0.0

0

YBCO

0.22 T

Copper

2

cuprate tapes on copper cavities

Outline

- New superconductors for SRF accelerators
- Axion dark matter
- Gravitational waves

The Standard Model does not contain dark matter

Dark matter evidence from astrophysics

Maybe something new to add to SM? \rightarrow axions

Axion Dark Matter eXperiment (ADMX)

How to improve the sensitivity?

More signal

Less noise by cooling down

$$P_{S} = (1.0 \times 10^{-22} \text{ W}) \times \left(\frac{V}{136 \text{L}}\right) \left(\frac{B}{6.8 \text{T}}\right)^{2} \left(\frac{C}{0.4}\right) \left(\frac{g}{0.97}\right)^{2} \left(\frac{\rho}{0.45 \text{ GeV/cm}^{3}}\right) \left(\frac{f}{650 \text{ MHz}}\right) \left(\frac{Q}{50000}\right)$$

Higher magnetic field while keeping the solenoid bore

How to get Higher Q? → HTS cavities

$$Q_N = \frac{h\nu}{e^{h\nu/k_BT} - 1} + h\nu > h\nu = 4.3 \times 10^{-25} \text{ W/Hz} \quad \text{Zero-point energy} \\ \rightarrow \textbf{S} \text{tandard } \textbf{Q} \text{uantum Limit}$$

ADMX reached SQL with Josephson Parametric Amplifier (in phase insensitive mode)

How to overcome SQL? → Single photon sensors

Single microwave photon sensors

F. Paolucci et al Phys Rev Appl. 14 034055 (2020)

Superconducting qubit based on a Josephson Junction Key: quantized LC circuit

Harmonic oscillator has equally spaced many states \rightarrow Not useful as qubit

Josephson junction

JJ \rightarrow anharmonic potential \rightarrow selective |0> & |1>

charge qubit

junctions

Three different implementations

phase qubit

SRF cavity is also a (huge) LC circuit

 \rightarrow Longer coherent length than existing qubits (qudits)

仙場 浩一 "招伝導量子ビットと単一光子の量子 もつれ制御"NTT技術ジャーナル 2007.11 23

One important lesson from ADMX

\rightarrow Can we tune the frequency non-mechanically?

Theory: Usadel equation (BCS theory in the dirty limit)

$$\epsilon + is \cosh(u + iv) = \Delta \coth(u + iv) \qquad \hat{G}^R = \begin{bmatrix} \cosh(u + iv) & e^{iQy} \sinh(u + iv) \\ -e^{-iQy} \sinh(u + iv) & -\cosh(u + iv) \end{bmatrix}$$

$$\beta = (H_{DC}/2H_c)^2 = (J_{DC}/2J_d)^2 \qquad \hat{G}^R = \begin{bmatrix} \cosh(u + iv) & e^{iQy} \sinh(u + iv) \\ -e^{-iQy} \sinh(u + iv) & -\cosh(u + iv) \end{bmatrix}$$

Green function gives all the information of the superconducting system

Solution PRL 113 087001 (2014)

 $s = \exp(-2x/\lambda)\beta\Delta_0$

For zero field $s \rightarrow 0$

$$\begin{bmatrix} \Delta(s) = \Delta_0 - \pi s/4 \\ r(\epsilon, s) = [\epsilon^2 \Delta^2 s^2 + (\epsilon^2 + s^2 - \Delta^2)^3/27]^{1/2} \\ \sinh 2u(\epsilon, s) = [(r + \epsilon \Delta s)^{1/3} - (r - \epsilon \Delta s)^{1/3}]/s \\ \sin v(\epsilon, s) = [-\Delta + (\Delta^2 - s^2 \sinh^2 2u)^{1/2}]/2s \cosh u \\ \sigma_1/\sigma_n = \frac{1}{\hbar\omega} \int_{-\infty}^{\infty} [f(\epsilon) - f(\epsilon + \hbar\omega)] [\operatorname{Re} G^R(\epsilon) \operatorname{Re} G^R(\epsilon + \hbar\omega) + \operatorname{Re} F^R(\epsilon) \operatorname{Re} F^R(\epsilon + \hbar\omega)] d\epsilon \\ \sigma_2/\sigma_n = \frac{1}{\hbar\omega} \int_{-\infty}^{\infty} \tanh \frac{\epsilon}{2kT} [\operatorname{Re} G^R(\epsilon) \operatorname{Im} G^R(\epsilon + \hbar\omega) + \operatorname{Re} F^R(\epsilon) \operatorname{Im} F^R(\epsilon + \hbar\omega)] d\epsilon \end{bmatrix}$$

Surface resistance / reactance

Come back to SRF: anti-Q-slope in N-doped LCLS-II cavities

The theory is however not complete! New research direction! → Frequency dependence is not reproduced

25

Outline

- New superconductors for SRF accelerators
- Axion dark matter
- Gravitational waves

Two Phenomena to address GW via microwaves

The Einstein equation

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

can be expanded to the linear order with small strain h

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

Mechanical deformation of a cavity wall

$$\frac{d^2x}{dt^2} = -\frac{1}{2}\frac{d^2h_{xx}}{dt^2}x + \frac{1}{2}\frac{d^2h_{xx}}{dt^2}y$$
$$\frac{d^2y}{dt^2} = \frac{1}{2}\frac{d^2h_{xx}}{dt^2}x + \frac{1}{2}\frac{d^2h_{xx}}{dt^2}y$$

arXiv:gr-qc/0502054

Coupling to microwaves under static B

M. E. Gertsenshtein JETP 41 113 1961

Projected Sensitivities of Axion Experiments

Primordial black hole merging
$$h_0 \sim 10^{-29} \times \left(\frac{1 \text{ pc}}{D}\right) \left(\frac{M_b}{10^{-11} M_{\odot}}\right)^{5/3} \left(\frac{\omega_g}{1 \text{ GHz}}\right)^{2/3}$$

Projected Sensitivities of Axion Experiments

The Global Network of Cavities to Search for Gravitational Waves (GravNet): A novel scheme to hunt gravitational waves signatures from the early universe arXiv:2308.11497

Kristof Schmieden¹ and Matthias Schott^{1,2}
 ¹ PRISMA+ Cluster of Excellence, Institute of Physics, Johannes Gutenberg University, Mainz, Germany,
 ² Department of Physics, Stony Brook University, USA

TIGHT A UNDER SHOLE DIS THE KEY

Potential sources (1 GHz GW): mergers of sub-solar masses

Primordial black hole merging
$$h_0 \sim 10^{-29} \times \left(\frac{1 \text{ pc}}{D}\right) \left(\frac{M_b}{10^{-11} M_{\odot}}\right)^{5/3} \left(\frac{\omega_g}{1 \text{ GHz}}\right)^{2/3}$$

Conclusion

- HTS superconductors
 - Cuprates and pnictides may be the future of SRF (pulsed & >10 K)
 - Optical conductivity and surface impedance were newly calculated in the Meissner state
- Dark matter axion search
 - Dark matter axion may be addressed via microwave cavities
 - HTS cavities & single photon detectors are the next step
 - synergy with quantum computers
 - Non-mechanical frequency tuning may be inline to the state-of-the-art SRF cavity physics (anti-Q-slope)
- Gravitational wave search
 - GW may be addressed via microwaves
 - A similar setup as axion search is being proposed
 - Maybe on-site experiment at Orsay in the future?
- Pôle Accelerator has technical competence in RF and cryogenics

How to start with? \rightarrow make use of the existing master project in IN2P3

MADMAX (DESY)

- Enhance the coherent microwave signal generated on the dielectric surface
- Dipole magnet (CEA)
- 25 GHz, 4 K, very low noise 10⁻²³ W/Hz

Courtesy: Antonios Gardikiotis, "Advances in searching for galactic axions with a Dielectric Haloscope"

