

New cross section measurements on Fe performed at the GELINA facility

G. Gkatis^{1,2}, M. Diakaki², S. Kopecky³, G. Noguere¹, A. Oprea³, C. Paradela³, E. Pirovano⁴, A. Plompen³, P. Schillebeeckx³

¹CEA/DES/IRESNE/DER/SPRC/LEPh, Cadarache, F-13108 Saint Paul Lez Durance, France

²Department of Physics, National Technical University of Athens, GR-15780 Athens, Greece

³European Commission, Joint Research Centre, B-2440 Geel, Belgium

⁴Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig, Germany

Accelerator and Research reactor Infrastructures for Education and Learning

Motivation

- Iron is a major structural material widely used in nuclear facilities and nuclear technology applications
- In nuclear power reactors, iron is used to make pressure vessels that contain the coolant, core shroud, and the reactor core
- Accurate neutron cross section data are indispensable for the design and reliable operation of such facilities
- Uncertainties on the current evaluated nuclear data libraries of iron do not meet yet the target requirements for the development of advanced reactor systems
- Discrepancies between evaluated and experimental cross sections have been observed in the fast neutron energy range

Lack of experimental data available in the literature **——** Need for new measurements!

The GELINA facility

• Pulsed white neutron source

 $10 \text{ meV} \leq E_n \leq 20 \text{ MeV}$

- Neutron energy determination using the TOF (Time-Of-Flight) technique
- 10 flight paths

Flight path length 10 m - 400 m

• Various experimental setups

(n,tot) - **(n,el)** - **(n,inl)** - (n,γ) -

(n,f) – (n,cp)

Neutron scattering cross section measurements on ⁵⁶Fe

The ELISA setup

- ELISA (ELastic and Inelastic Scattering Array)
 - 235U fission chamber (neutron flux)
 - 32 liquid organic scintillators (scattered neutrons)
- 27.037 m distance from the GELINA neutron source (FP1_30m)
- Beam diameter at sample position: 49 mm
- Fission chamber (FC) placed **1.37 m** from the sample
- Four sets of 8 detectors each mounted at specific angles
- **Digitizer-based** acquisition system + **NIM electronics** for the FC
- The goal is to produce **high-resolution cross section data** of neutron scattering in the fast neutron energy range

Some experimental details

^{nat}C experiment

- Date: **2020**
- Duration: ~600 hours
- Resolution: **5 ns**
- Pure ^{nat}C sample
 - Diameter: 100 mm
 - Thickness: 2.0 mm
 - Mass: 35.7 g

Isotope	Atomic percent		
¹² C	98.94		
¹³ C	1.06		

⁵⁶Fe experiment

- Date: Spring/Summer 2023
- Duration: ~**850** hours
- Resolution: **10 ns**
- Enriched ⁵⁶Fe sample
 - Diameter: 70 mm
 - Thickness: 1 mm
 - Mass: 31.396 g

Isotope	Atomic percent	
⁵⁴ Fe	0.16	
⁵⁶ Fe	99.77	
⁵⁷ Fe	0.07	
⁵⁸ Fe	<0.01	

Analysis

- <u>Step 1</u>: Characterization of the detectors (determination of the resolution + response functions)
- <u>Step 2</u>: Separate photon from neutron induced events via pulse shape analysis (*charge integration method*)
- <u>Step 3:</u> Background subtraction (sample-out measurement)
- <u>Step 4</u>: Elastic Inelastic separation (*kinematics* calculations + deconvolution of the light output distributions)
- <u>Step 5:</u> Multiple scattering correction (*Monte Carlo* simulations)
- <u>Step 6:</u> Calculation of the neutron fluence (fission chamber data analysis)
- <u>Step 7:</u> Cross section calculation

Results of the ⁵⁶Fe(n,n) – (JEFF-3.3)

Results of the ⁵⁶Fe(n,n) - (Angle-integrated)

Inelastic scattering with the ELISA setup

•

•

•

ARIEL Final Workshop

B

Jan-2024

Results of the ${}^{56}Fe(n,n_1') - (E_x = 846.8 \text{ keV})$

Results of the ⁵⁶Fe(n,n₁') – (Angle-integrated)

Results of the ^{nat}C(n,n) - (Angle-integrated)

Total cross section measurements on ^{nat}Fe

15

^{nat}Fe measurements at GELINA

- 50 m distance from the GELINA neutron source (FP4_50m)
- Accelerator operating at 800 Hz repetition rate
- The **moderated** neutron spectrum was used
- A ¹⁰B overlap filter was placed to absorb slow neutrons from a previous burst
- A **Pb filter** was placed to reduce the intensity of the γ -flash
- natFe sample was placed at 25 m distance from the neutron source
- The detector was placed at about **47.67 m** from the neutron target

^{nat}Fe measurements at GELINA

- A 6.35 mm thick and 152.4 mm diameter **NE912 Li-glass** scintillator enriched in ⁶Li
- **3** natural iron metallic discs were acquired
- The area of the samples was characterized by an optical surface inspection using a

microscope system

ID	Thickness (cm)	Mass (g)	Area/mm ²	Areal density (at/b)
1	1.1942 (2)	667.00 (5)	7093 (15)	0.1014 (2)
2	4.4864 (6)	2506.40 (5)	7095 (15)	0.381002 (6)
3	4.4876 (6)	2504.00 (5)	7086 (15)	0.3811 (6)

• Samples #1 and #2 were measured in Spring/Summer 2023 (6 weeks), a new

measurement **combining samples #2 and #3** is planned to take place as soon as possible!

Analysis – Background determination

The background contribution of the current transmission measurements is described by the following analytical expression:

$$B(t) = b_0 + b_1 e^{-\lambda_1 t} + b_2 e^{-\lambda_2 t} + b_3 e^{-\lambda_3 (t+t_0)}$$

- b_o : time independent contribution
- $b_1 e^{-\lambda_1 t}$: accounts for the contribution due to the detection of 2.2 MeV γ -rays resulting from neutron capture in hydrogen that is present in the moderator
- $b_2 e^{-\lambda_2 t}$: originates predominantly from neutrons scattered inside the detector station
- $b_3 e^{-\lambda_3(t+t_0)}$: accounts for the contribution due to slow neutrons from previous accelerator cycles

Analysis – Background determination

- The overlap component $(b_3 e^{-\lambda_3(t+t_0)})$ and the independent term (b_o) were obtained by extrapolating the TOF spectra at the end of the cycle
- The rest of the background contributions $(b_1e^{-\lambda_1 t}, b_2e^{-\lambda_2 t})$ were determined by using the black resonance technique.
- Black resonance filters used:

cea iresne

Na – Co – W

Analysis – Transmission calculation

$$T_{exp}(t_m) = N_T \frac{C_{in}(t_m) - k_T B_{in}(t_m)}{C_{out}(t_m) - k_T B_{out}(t_m)}$$

- C_{in} , C_{out} : counts of the sample-in and the sample-out measurement
- B_{in}, B_{out} : background contributions
- N_T : normalization factor to account for the losses due to dead time in the detector and electronics chain
- k_T : correlated uncertainty component for systematic effects due to the background model
- t_m : time-of-flight (T_0 -start signal / T_s -stop signal / t_0 -time offset)

 $t_m = (T_s - T_0) + t_0$

Transmission

Analysis – REFIT (work in progress...)

- Fit of the resonance parameters using the REFIT code (R-matrix formalism)
- Resonance parameters taken from JEFF-3.3
- Account for the resolution of the detector and the accelerator

Conclusion

⁵⁶Fe(n,n) + (n,n₁')

- The angular distributions of neutron elastic scattering by ⁵⁶Fe were produced in the energy range of 1 to 8 MeV
- This was the first experiment providing high-resolution cross section data for elastic scattering in the fast neutron energy region
- The **total uncertainties** of the angular distributions vary from **3%** to **20%**, and for the elastic scattering cross section between **3%** and **6%**
- Angular distributions and partial inelastic scattering cross section from the first excited state of ⁵⁶Fe $(E_x = 0.8468 \text{ MeV})$ were also extracted in the energy range between 2 and 5 MeV
- The **total uncertainties** of the inelastic angular distributions vary from **5%** to **30%**, and for the partial inelastic scattering cross section between **4%** and **15%**
- All the results were compared with **JEFF-3.3** and other experimental data available in the literature (EXFOR) and there is relatively **good agreement** (within uncertainties)

natFe(n,tot)

- Two natural iron samples of 1.2 cm and 4.5 cm thickness were measured at FP4_50m
- The transmission of both measurements has been extracted
- The resonance analysis using the **REFIT** code and the resonance parameters of **JEFF-3.3** has been initiated – The work is in progress...
- There is a plan to perform a measurement combining samples #2 and #3, to get a sample with a total thickness of ~9 cm.
- The new data will be uploaded to the **EXFOR** library soon!

Thank you for your attention!

This project has received funding from the EURATOM research and training programme 2014-2018 under grant agreement No 847594 (ARIEL)

Accelerator and Research reactor Infrastructures for Education and Learning

