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Fundamental The measurement of the fission yield mass distributions allows the
understanding of fission dynamics.

Applications Generation IV nuclear energy devices based on fast-neutron spectrum are a
call for more accurate nuclear data on the fission process (fission yields are
less known in fast fission region).

Introduction
Motivations to study nuclear fission
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How to measure fission yield mass
distributions?



Scheme of VERDI spectrometer (left) developed at JRC (Belgium). Picture of VERDI setup (right).

VERDI
VElocity FoR DIrect particle identification
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Experimental work at JRC



The design goal of VERDI is to produce fission yield mass distributions with a mass resolution from
1-2 mass units, for which a combined TOF resolution of at least 100 ps and an energy resolution of
at least 1 MeV is required. Therefore, the re-operation of VERDI came with a series of upgrades in
the system to reach those values:

• New flange with 32 connections to optimize geometrical
efficiency and new PIPS preamplification chains.

• New fully digital acquisition system with 2.5 GHz
sampling frequency and 12 bits of resolution.

• New MCP system with position-sensitive capabilities

• New developed plasma-delay-time parametrization for
data analysis correction.

• New PhD student visiting JRC for 1 year.

Experimental work at JRC
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The PIPS detectors used in
VERDI have a fabric resolution
of 𝜎 ∼ 8 keV. The aim was to
reproduce it by trying different
types of:

• Connection to the flange.

• Preamplification chains.

• Acquisition cards.

• The DSP was optimized
using CRRC4 filters,
based on results of studies
done at UU.

Energy resolution optimization

Uppsala University
8/40A. Gómez, et. al.



Energy resolution optimization
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Timing resolution optimization
MCP system
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Timing resolution optimization
Testing timing resolution with old MCP system
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The position-sensitive MCP signals (first arm) as well as the time reference MCP signals
(second arm) had a very poor quality. A new position-sensitive MCP was purchased by UU
for the second arm, which provided a TOF resolution of ∼ 190 ps.

Timing resolution optimization
Assembly of new position sensitive MCP detector
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• Some challenges in the coincident events
statistic delayed the characterization of the
new MCP.

• A new software to trigger the cards with the
PIPS signals was tested showing successful
results in the coincident events statistics.

Upcoming work.
• A technical paper to report the results of the
upgraded VERDI setup is foreseen.

• An experiment with Cm is planned for
spring 2024, once all the technical
remaining work is finished.

Timing resolution optimization
Current status and upcoming work
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Plasma-induced effects in silicon
detectors



Representation of the Plasma Delay Time (PDT) and Pulse High Defect (PHD) on a silicon
PIPS detector.

Plasma effects in silicon detectors
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Experiment at Institute Laue-Langevin



Experimental campaign at ILL
Setup
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Timing Filter Amplifier + Constant FractionDiscriminator filters were applied to the signals.

For the energy resolution CRRC4 filters were used (1 MeV to 2 MeV for FFs).

Analysis
Combined ToF resolution
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Analysis and Results
ToF and energy-channel calibrations
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Analysis and results
Plasma delay time extraction
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Figure: Spectrum calibrated with alphas (magenta) and spectrum adjusted to LOHENGRIN
energies (green). To extract the PHD value we substract the LOHENGRIN energies with losses
(simulated with Geant 4) from the measured energies.

Analysis
Pulse High Defect extraction
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Results
PDT trends
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Results
PHD trends
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→Interdetector comparison of PDT and PHD for A = 85. PDT results are in good agreement for detectors
connected to the same preamplification chain.

Results
Interdetector comparison
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PDT(A,E) = 𝐶 · A𝑁0E𝑁1 (1) Fit parameters result from the
two-dimensional fit using equation (1) to the
PDT data of each detector.

Detector 𝐶 𝑁0 𝑁1
Bottom I 0.315(26) -0.064(14) 0.586(08)
Bottom II 0.327(35) -0.029(20) 0.543(10)
Central I 0.315(31) -0.043(18) 0.562(08)
Top II 0.284(40) -0.015(25) 0.548(13)
Top I 0.342(35) -0.077(19) 0.583(09)

Results
Modeling
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Upcomming work



1 A paper is foreseen from the data analysis of old VERDI data of 252Cf(sf ) in which
the newly developed parametrization will be verified.

2 The parametrization will be also used in the Cm experiment data analysis.
3 These results will be part of my PhD thesis dissertation in 2025.

These projects have received funding from the Euratom research and training program 2014-
2018 under grant agreement No. 847594

Upcoming work
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Thanks



→Interdetector comparison of PDT and PHD for A = 143. PDT results are in good agreement even for detector
Top I, but the energy range less wide.

Results
Interdetector comparison
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PDT(A,E) = 𝐶 · A𝑁0E𝑁1

Results
Modeling
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Experimental campaign at ILL
LOHENGRIN
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Figure: Inter-detector time resolution comparison for mass 136.

Analysis
Combined ToF resolution
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Figure: Inter-detector energy resolution comparison for mass 136.

Analysis
Energy resolution
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→ Energy losses were estimated performing simulations with GEANT4.
→ The G4 classes used in the simulations showed better agreement with

experimental data.

Analysis
Energy losses in the MCP foil
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Δ 𝑃𝐷𝑇 → ΔGaussian fit + ΔTrue ToF + ΔCalibration
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Results
Uncertainty estimation PDT
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ToF Fit True ToF calculation Calibration
0.0

20.0

40.0

60.0

80.0

100.0

D
is

cr
im

in
at

ed
 U

nc
er

ta
in

ty
 P

D
T

 [%
]

Central I

Bottom II

Bottom I

Top II

Top I

Discriminated uncertainty for Mass 85 [u], Energy 100.17 MeV

ToF Fit True ToF calculation Calibration
0.0

20.0

40.0

60.0

80.0

100.0

D
is

cr
im

in
at

ed
 U

nc
er

ta
in

ty
 P

D
T

 [%
]

Central I

Bottom II

Bottom I

Top II

Top I

Discriminated uncertainty for Mass 143 [u], Energy 63.84 MeV

Results
Uncertainty estimation PDT
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Δ𝑃𝐻𝐷 → ΔGaussian fit + ΔCalibration + ΔEnergy loss
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Results
Uncertainty estimation PHD
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CRRC4 filters were used to improve the energy spectrum resolution.
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Digital Signal Processing
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→ The particle identification was performed using a reference spectra with a
change in the charge state in the LOHENGRIN setting.
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Analysis
Particle identification

Uppsala University
40/40A. Gómez, et. al.


	Introduction
	Motivations to study nuclear fission

	The fission spectrometer VERDI
	Restart of operations of VERDI spectrometer (SV_1_2 and SV_5_2)
	Energy resolution optimization
	TOF resolution optimization

	Investigation of the plasma delay time effect in PIPS detectors for the development of VERDI fission spectrometer (TAA_3_4)
	Analysis and Results
	Upcoming work

