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IYR can be used to calculate the angular 
momentum of fission fragments [1-5]  
Also useful to test nuclear models  
We need experiments to measure IYRs!

Isomeric yield ratio: ratio between yields 
of two isomers 

excited 

ground 

IYR =
Yhigh spin

Yhigh spin + Ylow spin

Introduction: isomers and isomeric yield ratio (IYR)

1. Huizenga and Vandenbosch, 1960 
2. Rakopoulos, 2018 
3. Rakopoulos, 2019 
4. Al-Adili, 2019 
5. Gao Z., 2023

Gao Z., “Isomeric yield ratios in nuclear 
fission”, PhD thesis (2023)
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Introduction: experimental campaign (TAA_2_3 )

 at 32 MeV at University of 
Jyväskylä (10/15.03.23) 
• Never measured system: 11.7% of 

existing IYR Th, never with  
• Low energy of compound nucleus 

(CN):  (probability of 
84%) 

• Very similar CN of  
• Investigate effect of high momentum 

added by  

Compare to data from other systems

232Th(α, f )

232 α

234U* @ 11.6 MeV

233U(nth, f )

α



D.A. Nesterenko, “Study of radial motion phase advance during 
motion excitations in a Penning trap and accuracy of JYFLTRAP 

mass spectrometer” (2021)
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Penning trap: device to store ions 
Superimposition of magnetic and 
quadrupolar electric field 
Motion has three components in a 
Penning trap: 

1. Magnetron motion at  ( ) 
(does not depend on the mass) 

2. Axial motion at  ( ) 

3. Reduced cyclotron motion at  
( ) 

1-3 are excited by RF signals 

𝜈− ≈ 1𝐾𝐻𝑧

𝜈𝑧 ≈ 50𝐾𝐻𝑧
𝜈+

≈ 1𝑀𝐻𝑧

6

Experimental: motion in a Penning trap



• The ion bunch enters purification 
trap 

• Magnetron motion (1) excited: all 
ions on a large radius 

• Cyclotron motion (2) of q/m excited: 
ion of interest at higher 𝝂. 

• Nuclei moving at higher frequency 
interact with gas and lose more 
energy: move closer to axis 

• Only ions close to axis are extracted 
(small aperture) 

This allows to select only a small mass 
window

Eronen, “JYFLTRAP: a Penning trap for precision mass 
spectroscopy and isobaric purification” (2012)

7

Experimental: purification trap (side-band cooling)
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• Bunch enters precision trap 
• Cyclotron motion excited; phase 

depends on frequency (mass) and 
time 

• Different masses (isomers) have 
different phases 

• Ions projected on a microchannel 
plate detector (MCP) 

This is a “picture” of ions moving

8

Experimental: precision trap (Phase-Imaging Ion-Cyclotron-Resonance)

IYR =
Chigh spin

Chigh spin + Clow spin

x [cm]

y [cm]
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Experimental: precision trap (Phase-Imaging Ion-Cyclotron-Resonance)
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Experimental: measured nuclei overview

Nucleus Ground State Metastable state

A T1/2 [s] Spin Eex (keV) T1/2 [s] Spin
97Y 3.75 1/2 667.51 1.17 9/2
98Y 0.55 0 241 2 4,5

100Y 0.73 1 144 0.94 4
99Nb 15 9/2 363 150 1/2

100Nb 1.5 1 313 2.99 5
102Nb 4.3 4 94 1.3 1
119Cd 162 1/2 147 132 11/2
121Cd 14 3/2 215 8.3 11/2
123Cd 2.1 3/2 143 1.8 11/2
125Cd 0.68 3/2 186 0.48 11/2
119In 144 9/2 311 1080 1/2
121In 23 9/2 314 234 1/2
123In 6.2 9/2 327 47 1/2
125In 2.4 9/2 360 12 1/2
127In 1.1 9/2 409 4.7 1/2
129Sn 143 3/2 35 414 11/2
132Sb 168 4 150 165,5 8
133Te 750 3/2 334 3324 11/2
132I 8280 4 120 4968 8
134I 3180 4 316 210 8
136I 83 1 206 47 6

21 isomers with  down to 480 ms and  of 
35 keV (!) 

T1/2 Eex
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134I 3180 4 316 210 8
136I 83 1 206 47 6

21 isomers with  down to 480 ms and  of 
35 keV (!) 

T1/2 Eex

1st measurement!

very low energy!9
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image to IYR value:
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• Identification method (to which state ions 

belong)

method to assign detected 
ions to a specific state

non-uniform sensitivity of 
MCP detector across its 
area

not so easy
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Analysis: important steps

Three important steps to go from PI-ICR 
image to IYR value:
• MCP efficiency correction
• Identification method (to which state ions 

belong)
• Decay correction

method to assign detected 
ions to a specific state

non-uniform sensitivity of 
MCP detector across its 
area

correct for the decay of 
ions during transport from 
target chamber to 
detection 
100ms - 1s

10



• Measurement of possible differences in 
sensitivity  

• Method (and positions spots) similar to 
real one 

• Internal  source used 
• always used “equatorial” zone (90° 

and 270°)

133Cd

1685

1580

1382

1684

1611

1683

1582

1631

11

Analysis: MCP efficiency correction - “calibration”

θ
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Analysis: MCP efficiency correction - “calibration”

θ

Observed possible differences 

Solution: two measurements for 
each nucleus

11
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Analysis: MCP efficiency correction - standard and mirrored

For each nucleus two data 
configurations measured:  
• standard: high-spin state 

at 90° 
• mirrored: high-spin state 

at 270° 

Analysis of differences still 
in progress
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• Method to identify to which 
state detected ions belong   

• Strong tails are observed in a 
part of the cases 

• Unknown origin 
• Different methods for 

identification adopted to study 
the impact of including or not 
including them: 
• “analogic”: 

• Angular cut 
• Angular cut with fixed 

sigma 
• clustering: 

• OPTICS 

Analysis: identification method 

13
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Analysis: identification method - angular cut
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Analysis: identification method - angular cut

σ, θc

σ, θc

Gaussian fit
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• For both spots, 
gaussian fit 1D 
distributions of 
angular position 
detected ions 

• All counts in 
[ ] 
are summed
θc − 3σ, θc + 3σ

Analysis: identification method - angular cut

15



Analysis: identification method - spot size dependency

16

Spot size empirically 
depends on time spent 
in purification trap by 
ions 
This dependency is 
fitted and used to 
calculate  σ(tT2)



Analysis: identification method - angular cut & fixed sigma

• Physics: we expect comparable spot sizes  

• Spot size used for counting is the one given by   
• Very similar but more restrictive approach

σ(tT2)

Cd123

17

θc − 3σ(tT2), θc + 3σ(tT2)

θc − 3σ, θc + 3σ
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Analysis: identification method - OPTICS

• Clustering method based on distance (reachability) between spots 
• External parameter to set: eps i.e. maximum reachability 
• Two spots are assigned to same cluster if within distance lower than eps 
• Usually tails are included 

In125

18



Analysis: identification method - identification methods compared

Very close results, except for Cd, where anyway uncertainties overlap 
Conclusion: tails are a relevant but not critical factor for IYR measurement

119
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Analysis: decay correction

Takes a long time for ions to be extracted and to 
reach MCP (500-1000 ms) 
So we need a decay correction. To consider: 
• Decay of ground  
• Influence of precursors 
Ingredients we need:  
• Half-lives → NUBASE2020 evaluation 
• Fission yields → GEF using s.f. of 

 
• Transition branching ratios → using NNDC decay 

schemes 

234U* @ 11.6 MeV



• Simulation for the different stages (TC, RFQ, T1, T2) 
• Dividing time in discrete intervals 
• Calculating balance equation for ground and excited state: 

• nucleus 
• first precursor 
• second precursor 

Initial IYR in target chamber progressively changed until simulated and experimental 
measured IYR match 

Systematic uncertainty: calculation repeated 106 times resampling parameters (bootstrap)

nuclear 
state

internal transition

decay to excited state

source term

decay to ground state

21

Analysis: decay correction
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Result can vary significantly 
In some cases large uncertainty 
introduced due to key parameter 
not well known 
Still work in progress, especially 
uncertainty calculation

Analysis: decay correction - results

ac o t ac-fs

0.75

0.80

0.85

0.90
97Y

ac o t ac-fs

0.76

0.78

0.80

0.82

102Nb

angular cut - measured
o tics - measured
angular cut - fixed sigma - measured

angular cut - corrected
o tics - corrected
angular cut - fixed sigma - corrected

ac o t ac-fs

0.82

0.83

0.84

0.85

0.86

0.87
119Cd

ac o t ac-fs

0.96

0.97

0.98

0.99

1.00
121In

precursor 97Sr 

 ms  λ = 429 ± 5
FYrel = 0.3
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Conclusions and future development

• Conclusions:  
• Close to final results 
• Interesting physics and results ahead 

• Future development:  
• Complete analysis: 

• extend study to other nuclei 
• compare standard and mirrored results  

• Physical interpretation: 

• compare to other systems, especially  
• look for systematic behaviours and differences 

• Calculate angular momentum 

233U(nth, f )
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• Conclusions:  
• Close to final results 
• Interesting physics and results ahead 

• Future development:  
• Complete analysis: 

• extend study to other nuclei 
• compare standard and mirrored results  

• Physical interpretation: 

• compare to other systems, especially  
• look for systematic behaviours and differences 

• Calculate angular momentum 

233U(nth, f ) Thank you for the 
attention!
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Current efforts on this  
Recently published paper:  
Cannarozzo S., Pomp S., Solders A., Al-Adili 
A., Göök A., Koning A. 
“Global comparison between experimentally 
measured isomeric yield ratios and nuclear 
model calculations” 
(2023) European Physical Journal A, 59 (12), 
art. no. 295

Introduction: from scission to isomers

nuclear  
models

measurable

Isomers are excited meta-stable states of a nucleus 
Yields depend on angular momentum and can be 
calculated 

25



• Measurements of possible differences in 
sensitivity  

• Two ways: 
• Circular: 

• Radius progressively changed (by 
changing extraction time) 

• Gives global info  
• Method different than one used for 

measurement 
• Spots: 

• Radius progressively changed (by 
changing accumulation time) 

• Gives more local info 
• Method (and positions spots) similar to 

real one

1685

1580

1382

1684

1611

1683

1582

1631
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119Cd
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Decay correction: possible transitions

excited 
state, 

nucleus

ground 
state, 

nucleus

ITnuc

λnuc,e

λnuc,g

excited 
state, 1st 
precursor

ground 
state, 1st 
precursor

ITp1

BRp1,e, λp1,e

1 − BRp1,e, λp1,e

BRp1,g, λp1,g

1 − BRp1,g, λp1,g

excited 
state, 2nd 
precursor

ground 
state, 2nd 
precursor

ITp2

BRp2,e, λp2,e

1 − BRp2,e, λp2,e

BRp2,g, λp2,g

1 − BRp2,g, λp2,g

IN

IN

IN

IN

IN

IN

29



Gas Cell 

i o n s  c o n t i n u o u s l y  
p r o d u c e d  i n  f i s s i o n  

e v e n t s  

RFQ - ion 
buncher 

i o n s  t r a p p e d ,  
i n c o m i n g  b e a m  f r o m  

g a s  c e l l  

Purification 
trap 

i o n s  t r a p p e d ,  n o  
i n c o m i n g  b e a m ,  s t i l l  
p r e c u r s o r s  p r e s e n t   

Precision 
trap 

i o n s  t r a p p e d ,  n o  
i n c o m i n g  b e a m ,  n o  
p r e c u r s o r s  p r e s e n t

Decay correction: different steps

30
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Decay correction: different steps

excited 
state, 

nucleus

ground 
state, 

nucleus

ITnuc

λnuc,e

λnuc,g

excited 
state, 1st 
precursor

ground 
state, 1st 
precursor

ITp1

BRp1,e, λp1,e

1 − BRp1,e, λp1,e

BRp1,g, λp1,g

1 − BRp1,g, λp1,g

excited 
state, 2nd 
precursor

ground 
state, 2nd 
precursor

ITp2

BRp2,e, λp2,e

1 − BRp2,e, λp2,e

BRp2,g, λp2,g

1 − BRp2,g, λp2,g

FYnuc ⋅ IYR

FYnuc ⋅ (1 − IYR)

FYp1 ⋅ IYRp1

FYp1 ⋅ (1 − IYRp1)

FYp2 ⋅ IYRp2

FYp2 ⋅ (1 − IYRp2)
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Gas Cell 

i o n s  c o n t i n u o u s l y  
p r o d u c e d  i n  f i s s i o n  

e v e n t s  

Decay correction: different steps

excited 
state, 

nucleus

ground 
state, 

nucleus

ITnuc

λnuc,e

λnuc,g

excited 
state, 1st 
precursor

ground 
state, 1st 
precursor

ITp1

BRp1,e, λp1,e

1 − BRp1,e, λp1,e

BRp1,g, λp1,g

1 − BRp1,g, λp1,g

excited 
state, 2nd 
precursor

ground 
state, 2nd 
precursor

ITp2

BRp2,e, λp2,e

1 − BRp2,e, λp2,e

BRp2,g, λp2,g

1 − BRp2,g, λp2,g

FYnuc ⋅ IYR

FYnuc ⋅ (1 − IYR)

FYp1 ⋅ IYRp1

FYp1 ⋅ (1 − IYRp1)

FYp2 ⋅ IYRp2

FYp2 ⋅ (1 − IYRp2)

THIS IS WHAT WE LOOK FOR!
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RFQ - ion 
buncher 

i o n s  t r a p p e d ,  
i n c o m i n g  b e a m  f r o m  

g a s  c e l l  

Decay correction: different steps

excited 
state, 

nucleus

ground 
state, 

nucleus

ITnuc

λnuc,e

λnuc,g

excited 
state, 1st 
precursor

ground 
state, 1st 
precursor

ITp1

BRp1,e, λp1,e

1 − BRp1,e, λp1,e

BRp1,g, λp1,g

1 − BRp1,g, λp1,g

excited 
state, 2nd 
precursor

ground 
state, 2nd 
precursor

ITp2

BRp2,e, λp2,e

1 − BRp2,e, λp2,e

BRp2,g, λp2,g

1 − BRp2,g, λp2,g

GCnuc,e

GCnuc,g

GCp1,e

GCp1,g

GCp2,e

GCp2,g
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Decay correction: different steps

excited 
state, 

nucleus

ground 
state, 

nucleus

ITnuc

λnuc,e

λnuc,g

excited 
state, 1st 
precursor

ground 
state, 1st 
precursor

ITp1

BRp1,e, λp1,e

1 − BRp1,e, λp1,e

BRp1,g, λp1,g

1 − BRp1,g, λp1,g

excited 
state, 2nd 
precursor

ground 
state, 2nd 
precursor

ITp2

BRp2,e, λp2,e

1 − BRp2,e, λp2,e

BRp2,g, λp2,g

1 − BRp2,g, λp2,g

Purification 
trap 

i o n s  t r a p p e d ,  n o  
i n c o m i n g  b e a m ,  s t i l l  
p r e c u r s o r s  p r e s e n t   
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Decay correction: different steps

excited 
state, 

nucleus

ground 
state, 

nucleus

ITnuc

λnuc,e

λnuc,g

Precision 
trap 

i o n s  t r a p p e d ,  n o  
i n c o m i n g  b e a m ,  s t i l l  
p r e c u r s o r s  p r e s e n t
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Introduction: fission
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Fundamental question: where does angular 
momentum of fission fragments come from?


