Isomeric yield ratio measurements of Th(a,f) at 32 MeV

S. Cannarozzo¹, S. Pomp¹, A. Solders¹, Z. Gao¹, A. Al-Adili¹, M. Lantz¹ and the IGISOL group ²

¹ Uppsala University, ² University of Jyväskylä

UPPSALA UNIVERSITET

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 847594 (ARIEL).

Accelerator and Research reactor Infrastructures for Education and Learning

ARIEL - H2020 Final Workshop 17/19-01-24 - IJCLab

Introduction: from scission to isomers

Fundamental question: where does angular momentum of fission fragments come from?

Introduction: from scission to isomers 0 238U E^* Primary Fission Fragments n neutron 239U n emission n Secondary Fission prompt Fragments Sn discrete

γ-ray

emission

Isomer

10

Introduction: isomers and isomeric yield ratio (IYR)

Isomeric yield ratio: ratio between yields of two isomers

$$IYR = \frac{Y_{high \ spin}}{Y_{high \ spin} + Y_{low \ spin}}$$

3

IYR can be used to calculate the **angular momentum** of fission fragments [1-5]

Also useful to test nuclear models

We need experiments to measure IYRs!

Huizenga and Vandenbosch, 1960
 Rakopoulos, 2018
 Rakopoulos, 2019
 Al-Adili, 2019
 Gao Z., 2023

Gao Z., "Isomeric yield ratios in nuclear fission", PhD thesis (2023)

Introduction: experimental campaign (TAA_2_3)

- $^{232}Th(\alpha, f)$ at 32 MeV at University of Jyväskylä (10/15.03.23)
- Never measured system: 11.7% of existing IYR 232 Th, never with α
- Low energy of compound nucleus (CN): ²³⁴U* @ 11.6 MeV (probability of 84%)
- Very similar CN of $^{233}U(n_{th}, f)$
- Investigate effect of high momentum added by α

Compare to data from other systems

mass spectrometer" (2021)

1. Fission fragments production in the target chamber (TC)

2. Thermalization and extraction by buffer gas

- 1. Fission fragments production in the target chamber (TC)
- 2. Thermalization and extraction by buffer gas
- 3. Mass separation (dipole magnet)

- 1. Fission fragments production in the target chamber (TC)
- 2. Thermalization and extraction by buffer gas
- 3. Mass separation (dipole magnet)
- Bunching of continuous beam (RFQ coolerbuncher)

- 1. Fission fragments production in the target chamber (TC)
- 2. Thermalization and extraction by buffer gas
- 3. Mass separation (dipole magnet)
- 4. Bunching of continuous beam (RFQ coolerbuncher)
- 5. Isomer separation (Penning traps)

- 1. Fission fragments production in the target chamber (TC)
- 2. Thermalization and extraction by buffer gas
- 3. Mass separation (dipole magnet)
- 4. Bunching of continuous beam (RFQ coolerbuncher)
- 5. Isomer separation (Penning traps)
- 6. Position sensitive detection (MCP)

motion excitations in a Penning trap and accuracy of JYFLTRAP mass spectrometer" (2021)

Experimental: motion in a Penning trap

Penning trap: device to store ions

Superimposition of magnetic and quadrupolar electric field

Motion has three components in a Penning trap:

- 1. Magnetron motion at v_{-} ($\approx 1 KHz$) (does not depend on the mass)
- 2. Axial motion at v_z ($\approx 50 KHz$)
- 3. Reduced cyclotron motion at v_+ ($\approx 1 MHz$)

1-3 are excited by RF signals

Experimental: purification trap (side-band cooling)

- The ion bunch enters purification trap
- Magnetron motion (1) excited: all ions on a large radius
- Cyclotron motion (2) of q/m excited:
 ion of interest at higher ν.
- Nuclei moving at higher frequency interact with gas and lose more energy: move closer to axis
- Only ions close to axis are extracted (small aperture)

This allows to select only a small mass window

Experimental: precision trap (Phase-Imaging Ion-Cyclotron-Resonance)

- Bunch enters precision trap
- Cyclotron motion excited; phase depends on frequency (mass) and time

 $\varphi_+ + 2\pi n_+ = 2\pi \nu_+ t$

- Different masses (isomers) have different phases
- Ions projected on a microchannel plate detector (MCP)

This is a "picture" of ions moving

8

$$+\nu_{+}=\nu_{c}=\frac{1}{2\pi}\frac{q}{m}B$$

 ν_{-}

$$IYR = \frac{C_{high spin}}{C_{high spin} + C_{low spin}}$$

Experimental: precision trap (Phase-Imaging Ion-Cyclotron-Resonance)

- Bunch enters precision trap
- Cyclotron motion excited; phase depends on frequency (mass) and time

 $\varphi_+ + 2\pi n_+ = 2\pi\nu_+ t$

- Different masses (isomers) have different phases
- Ions projected on a microchannel plate detector (MCP)

8

Experimental: measured nuclei overview

Nucleus	Ground State		Metastable state		ate
А	T _{1/2} [s]	Spin	E _{ex} (keV)	T _{1/2} [s]	Spin
97Y	3.75	1/2	667.51	1.17	9/2
98Y	0.55	0	241	2	4,5
100Y	0.73	1	144	0.94	4
99Nb	15	9/2	363	150	1/2
100Nb	1.5	1	313	2.99	5
102Nb	4.3	4	94	1.3	1
119Cd	162	1/2	147	132	11/2
121Cd	14	3/2	215	8.3	11/2
123Cd	2.1	3/2	143	1.8	11/2
125Cd	0.68	3/2	186	0.48	11/2
119In	144	9/2	311	1080	1/2
121In	23	9/2	314	234	1/2
123In	6.2	9/2	327	47	1/2
125In	2.4	9/2	360	12	1/2
127In	1.1	9/2	409	4.7	1/2
129Sn	143	3/2	35	414	11/2
132Sb	168	4	150	165,5	8
133Te	750	3/2	334	3324	11/2
1321	8280	4	120	4968	8
1341	3180	4	316	210	8
1361	83	1	206	47	6

21 isomers with $T_{1/2}$ down to 480 ms and E_{ex} of 35 keV (!)

9

Experimental: measured nuclei overview

Nucleus	Ground State		Metastable state		
А	T _{1/2} [s]	Spin	E _{ex} (keV)	T _{1/2} [s]	Spin
97Y	3.75	1/2	667.51	1.17	9/2
98Y	0.55	0	241	2	4,5
100Y	0.73	1	144	0.94	4
99Nb	15	9/2	363	150	1/2
100Nb	1.5	1	313	2.99	5
102Nb	4.3	4	94	1.3	
119Cd	162	1/2	147	132	11/2
121Cd	14	3/2	215	8.3	11/2
123Cd	2.1	3/2	143	1.8	11/2
125Cd	0.68	3/2	186	0.48	11/2
119In	144	9/2	311	1080	1/2
121In	23	9/2	314	234	1/2
123In	6.2	9/2	327	47	1/2
125In	2.4	9/2	360	12	1/2
127In	1.1	9/2	409	4.7	1/2
129Sn	143	3/2	35	414	11/2
132Sb	168	4	150	165,5	8
133Te	750	3/2	334	3324	11/2
1321	8280	4	120	4968	8
1341	3180	4	316	210	8
1361	83	1	206	47	6

21 isomers with $T_{1/2}$ down to 480 ms and E_{ex} of 35 keV (!)

very low energy!

Analysis: important steps

Analysis: important steps

Three important steps to go from PI-ICR image to IYR value:

Analysis: important steps

Three important steps to go from PI-ICR image to IYR value:

• MCP efficiency correction

non-uniform sensitivity of MCP detector across its area

Analysis: MCP efficiency correction - "calibration"

- Measurement of possible differences in sensitivity
 - Method (and positions spots) similar to real one
 - Internal ^{133}Cd source used
 - always used "equatorial" zone (90° and 270°)

Analysis: MCP efficiency correction - "calibration"

- Measurement of possible differences in sensitivity
 - Method (and positions spots) similar to real one
 - Internal ^{133}Cd source used
 - always used "equatorial" zone (90° and 270°)

Observed possible differences

Solution: **two measurements** for each nucleus

Analysis: MCP efficiency correction - standard and mirrored

For each nucleus two data configurations measured:

- standard: high-spin state at 90°
- mirrored: high-spin state at 270°

Analysis of differences still in progress

Analysis: identification method

- Method to identify to which state detected ions belong
- Strong **tails** are observed in a part of the cases
- Unknown origin
- **Different methods** for identification adopted to study the impact of including or not including them:
 - "analogic":
 - Angular cut
 - Angular cut with fixed sigma
 - clustering:
 - OPTICS

Analysis: identification method - angular cut

UPPSALA

UNIVERSITET

14

Analysis: identification method - angular cut

Analysis: identification method - angular cut

- For both spots, gaussian fit 1D distributions of angular position detected ions
- All counts in $[\theta_c 3\sigma, \theta_c + 3\sigma]$ are summed

Spot size empirically depends on time spent in purification trap by ions

This dependency is fitted and used to calculate $\sigma(t_{T2})$

Analysis: identification method - spot size dependency

Analysis: identification method - angular cut & fixed sigma

- **Physics**: we expect comparable spot sizes
- Spot size used for counting is the one given by $\sigma(t_{T2})$
- Very similar but more restrictive approach

Analysis: identification method - angular cut & fixed sigma

- **Physics**: we expect comparable spot sizes
- Spot size used for counting is the one given by $\sigma(t_{T2})$
- Very similar but more **restrictive** approach

Analysis: identification method - OPTICS

- Clustering method based on distance (reachability) between spots
- External parameter to set: eps i.e. maximum reachability
- Two spots are assigned to same cluster if within distance lower than eps
- Usually tails are included

UPPSAL

UNIVERSITET

Analysis: identification method - identification methods compared

Very close results, except for 119 Cd, where anyway uncertainties overlap Conclusion: tails are a relevant but **not critical factor** for IYR measurement

Analysis: decay correction

Takes a long time for ions to be extracted and to reach MCP (500-1000 ms)

So we need a **decay correction.** To consider:

- Decay of ground
- Influence of precursors

Ingredients we need:

- Half-lives \rightarrow NUBASE2020 evaluation
- Fission yields \rightarrow GEF using s.f. of $^{234}U^*$ @ 11.6 MeV
- Transition branching ratios \rightarrow using NNDC decay schemes

100Nb 1.5 s	101Nb 7.1 s	
β [.] = 100.00%	β [.] = 100.00%	1
99Zr 2.1 s	100Zr 7.1 s	
β [.] = 100.00%	β [.] = 100.00%	f
98Y 0.548 s	99Y 1.484 s	
β [.] = 100.00% β [.] n = 0.33%	β [.] = 100.00% β [.] n = 1.70%	ſ
	$\frac{100Nb}{1.5 \text{ s}}$ $\beta' = 100.00\%$ $\frac{992r}{2.1 \text{ s}}$ $\beta' = 100.00\%$ $\frac{98Y}{0.548 \text{ s}}$ $\beta' = 100.00\%$ $\beta'n = 0.33\%$	100Nb101Nb1.5 s $7.1 s$ $\beta = 100.00\%$ $\beta = 100.00\%$ $99Zr$ $100Zr$ $2.1 s$ $100Zr$ $\beta = 100.00\%$ $\beta = 100.00\%$ $\beta = 100.00\%$ $\beta = 100.00\%$ $98Y$ $99Y$ $0.548 s$ $99Y$ $\beta = 100.00\%$

Analysis: decay correction

- Simulation for the different stages (TC, RFQ, T1, T2)
- Dividing time in discrete intervals
- Calculating balance equation for ground and excited state:
 - nucleus
 - first precursor
 - second precursor

Initial IYR in target chamber **progressively changed** until simulated and experimental measured IYR match

Systematic uncertainty: calculation repeated 10⁶ times resampling parameters (bootstrap)

Analysis: decay correction - results

Result can vary significantly

In some cases **large uncertainty** introduced due to **key parameter** not well known

Still work in progress, especially uncertainty calculation

Analysis: decay correction - results

Result can vary significantly

In some cases large uncertainty introduced due to key parameter not well known

Still work in progress, especially uncertainty calculation

Analysis: decay correction - results

Result can vary significantly

In some cases **large uncertainty** introduced due to **key parameter** not well known

Still work in progress, especially uncertainty calculation

Conclusions and future development

- Conclusions:
 - Close to final results
 - · Interesting physics and results ahead
- Future development:
 - Complete analysis:
 - extend study to other nuclei
 - compare standard and mirrored results
 - Physical interpretation:
 - compare to other systems, especially ${}^{233}U(n_{th}, f)$
 - look for systematic behaviours and differences
 - Calculate angular momentum

Conclusions and future development

- Conclusions:
 - Close to final results
 - Interesting physics and results ahead
- Future development:
 - Complete analysis:
 - extend study to other nuclei
 - compare standard and mirrored results
 - Physical interpretation:
 - compare to other systems, especially ${}^{233}U(n_{th}, f)$
 - look for systematic behaviours and differences
 - Calculate angular momentum

Thank you for the attention!

Introduction: from scission to isomers

Fundamental question: where does angular momentum of fission fragments come from?

UPPSALA

UNIVERSITET

Introduction: from scission to isomers

Current efforts on this

Recently published paper:

Cannarozzo S., Pomp S., Solders A., Al-Adili A., Göök A., Koning A.

"Global comparison between experimentally measured isomeric yield ratios and nuclear model calculations"

(2023) European Physical Journal A, 59 (12), art. no. 295

Isomers are excited **meta-stable states** of a nucleus **Yields depend on angular momentum** and can be calculated

Experimental - MCP sensitivity

- Measurements of possible differences in sensitivity
- Two ways:
 - Circular:
 - Radius progressively changed (by changing extraction time)
 - Gives global info
 - Method different than one used for measurement
 - Spots:
 - Radius progressively changed (by changing accumulation time)
 - Gives more local info
 - Method (and positions spots) similar to real one

Experimental - MCP sensitivity

- Measurements of possible differences in sensitivity
- Two ways:
 - Circular:
 - Radius progressively changed (by changing extraction time)
 - Gives global info
 - Method different than one used for measurement
 - Spots:
 - Radius progressively changed (by changing accumulation time)
 - Gives more local info
 - Method (and positions spots) similar to real one

Experimental - MCP sensitivity

- Measurements of possible differences in sensitivity
- Two ways:
 - Circular:
 - Radius progressively changed (by changing extraction time)
 - Gives global info
 - Method different than one used for measurement
 - Spots:
 - Radius progressively changed (by changing accumulation time)
 - Gives more local info
 - Method (and positions spots) similar to real one

119Cd

Decay correction: possible transitions

Gas Cell	RFQ - ion	Purification	Precision
	buncher	trap	trap
ions continuously	ions trapped,	ions trapped, no	ions trapped, no
produced in fission	incoming beam from	incoming beam, still	incoming beam, no
events	gas cell	precursors present	precursors present
30			

Precision trap

ions trapped, no incoming beam, still precursors present

, SALA

JNIVERSITET

Introduction: fission

Fundamental question: where does angular momentum of fission fragments come from?

