ARIEL - H2020 Final Workshop ID de Contribution: 9 Type: Non spécifié ## Radiative capture study of silver γ -decay spectra using $\gamma\gamma$ -coincidences jeudi 18 janvier 2024 14:30 (25 minutes) Determination of the accurate values for gamma transitions, level scheme, nuclear level density and radiative strength functions is crucial in low-energy nuclear physics. Accurate experimental values of those parameters are very important for both fundamental and applied research. The two-step gamma cascades method, involving the detection of gamma coincidences following thermal (cold) neutron capture, i.e. the $(n_{th}, 2\gamma)$ reaction, is a highly suitable technique for obtaining spectroscopic data and insights into level density and radiative strength functions. The experiment using an enriched 107 Ag target was conducted at the PGAA station of the Budapest Neutron Centre, Budapest, Hungary, with thermal neutron beam, 3 HPGe detectors with appropriate shielding and acquisition system for coincidence measurements. In this talk, a brief overview of the method, some of the previous results, as well as the spectroscopic results for 108 Ag nuclei obtained through 107 Ag $(n_{th}, 2\gamma)$ reaction will be presented. **Auteurs principaux:** Dr KNEŽEVIĆ, David (TUM-FRM II); JOVANČEVIĆ, Nikola (University of Novi Sad); STIEGHORST, Christian (TUM - FRM II); Mlle MILANOVIĆ, Tamara (Vinča Institute of nuclear sciences, Serbia) **Co-auteurs:** Dr SZENTMIKLÓSI, László (Nuclear Analysis and Radiography Department, Centre for Energy Research, H-1121 Budapest, Hungary); Dr REVAY, Zsolt (TUM-FRM II); Dr BELGYA, Tamás (Nuclear Analysis and Radiography Department, Centre for Energy Research, H-1121 Budapest, Hungary) Orateur: Dr KNEŽEVIĆ, David (TUM-FRM II) Classification de Session: Session 5