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Why measuring light-ion production?

Better nuclear data regarding light-ion (p, d, t, *He, and a) production induced by neutrons are of great interest for
several applications; The data are really scarce for a number of reactions;

Not all datasets are represented in the Figures
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Why measuring light-ion production?

Double differential cross sections (DDX) for light charged particles
(LCP) as a function of neutron energy to be measured.

For each neutron energy:

From DDXs we can obtain:

e single-differential cross-sections with respect to the angle of the

15.0
emitted particle (for each neutron energy);
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e integrated (n, LCP) production cross sections as a function of

neutron energy. 5.00 -
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Experiment configuration 2023
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*2022 experiment was also carried out at NFS.



Medley setup for the last experiments

The objective is to measure double differential cross
sections.

termination foil

0 25 50 cm
Adapted from Nucl. Instr. and Meth. A, 452 (3) (2000), p. 484

8 Si-Si-Csl(Tl) telescopes for light ion identification.

coverage: 20° to 160° (20° steps); ~20 msr/telescope.

Rotatable table allowing to cover forward and

backward emission with different detectors. Medley (opened) chamber with Fe sample installed.




Medley setup for the last experiments

J‘ | ," ! [’ Two experiments were carried out in October-November 2023 (~ 400h
A | : of data):
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. 1 F e MICr(~1 week beamtime to complement 2022 campaign).

o Measurements with 75 ym and 15 um targets, both
deposited in 125 pm polyester backing.

C e "'Fe (~1 week of beamtime).

o  Also measure thin (5 um) and thick (25 pm) targets.

e CH, and C to obtain neutron flux from np scattering




Particle identification

run 388, Carbon, Q=0.3C
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Particle identification

run 388, Carbon, Q=0.3C
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e Good calibration is also required to obtain the neutron energy
(ToF technique):

ToF = ToF + ToF
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Challenges

We found some deviation in the ToF measurement for energies near the punch through of the second silicon detector.
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Ongoing corrections

It can be corrected, but some extra processing is necessary. He already have some ideas regarding this behaviour:

Our ToF measurements is obtained from the

second Si detector:
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provides ToF measurement:
(better resolution and timing
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GANIL’s electronics)
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b) particle which
punched through Si.

a) particle which
stopped inside Si.

Table 11.1 Properties of Intrinsic Silicon and Germanium

rise time:

Si

Electron mobility (300 K); cm?/V - s 1350
Hole mobility (300 K); cm?/V -s 480

Electronic is still sensitive to
difference probably due to signal rise
time, which would lead to wrong time
measurement!  Deeper analysis
ongoing.
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Ongoing corrections

It can be corrected, but some extra processing is necessary.
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Preliminary results

First plots of particle production as a function of neutron energy (Tel 1). Fe thin (19.8h, charge = 2.6 C)

protons as function of ENN deuterons as function of ENN tritons as function of ENN
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Preliminary results

First plots of particle production as a function of neutron energy (Tel 1). Fe thick (22h, Charge = 2.8 C)

protons as function of ENN deuterons as function of ENN tritons as function of ENN
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Preliminary results

As example of a very preliminary result:

The proton spectra from "aFe(n,pX) for different neutron energies using "®Fe 25 um thick target.

"a'Fe(n,pX), E, = 29.0 MeV
Exp. ENN =28 to 30 MeV
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Preliminary analysis indicates reasonable agreement with TALYS code (simulations does not include detector’s

resolutions yet).

Several steps are being implemented (such as the ToF correction for other particles and the thick target correction).




Conclusions and perspectives

e The experiments on C, Fe and Cr were successfully carried in 2022 and 2023, providing good amount of data

which is being analysed.
e The setup worked well, proved to be suitable to distinguish the light ions isotopes.

e We have measured the neutron flux in the whole range of NFS (although we are working on some issues with the

analysis)

e Finish data analysis (non-trivial) for to provide double differential cross sections for (n,LCP) in C,natFe and natCr.

e  Better understand the background conditions of the experiments (NFS in a new facility, so this details are being studied in
parallel). [ongoing]

e Retrieve good ToF correction for all the particles. [ongoing]

e  Combining data for all the 8 telescopes.

e  Thick target correction (mainly for Cr data).

e  Experiment with Cu proposed by UKAEA (already approved by GANIL for this year).

e  Propose new experiments for medley in NFS for coming years.
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