Recent results from Belle II

Jim Libby
Indian Institute of Technology Madras

Outline

- Why flavour physics?
- Why flavour physics in $\mathrm{e}^{+} \mathrm{e}^{-}$? Belle II
- Interlude: more than B physics
- 七 mass measurement
- search for invisible decay of Z'
- Back to the B
- Latest CP violation results
- Tests of lepton-flavour universality
- Evidence for $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{vv}$
- Current status and plans

Why flavour physics? - history of discovery

- Particle zoo of mesons and baryons discovered in 1950s and early 1960s lead to the quark model

```
- up (u)
- down (d)
- strange (s)
```

- An allowed but rare decay such as

$$
K_{L}^{0}(s \bar{d}) \rightarrow \mu^{+} \mu^{-}
$$

was predicted but not seen!

Why flavour physics? - history of discovery

Glashow

Iliopoulos

Maiani

Phys. Rev. D 2, 1285 (1970)
$\mathrm{m}_{\mathrm{c}} \sim 3 \mathrm{~m}_{\mathrm{K}}$
Such rare virtual processes tell you about higher energy particles

CKM matrix

- Two by two mixing matrix proposed by Cabibbo

- Kobayashi-Maskawa proposed third generation to explain observed CP violation by Cronin and Fitch
- 3×3 unitary complex matrix
- 4 parameters
- 3 mixing angle and 1 phase
- Intergenerational coupling disfavoured

Relative magnitude of elements
\square
\square

Visualising CP violation: the unitarity triangle

$$
\begin{gathered}
A \lambda^{3}(\rho-i \eta) \\
A \lambda^{2} \\
1
\end{gathered}+O\left(\lambda^{4}\right) \quad \lambda=\sin \theta_{c}=0.22
$$

2) Exploit unitarity (15t and $3^{\text {rd }}$ col.) $V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$
3)

$$
\begin{aligned}
& \phi_{1}=\beta \\
& =\arg \left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right) \\
& \simeq \arg \left(\frac{1}{1-\rho-i \eta}\right)
\end{aligned}
$$

Over constraint - loop sensitivity

Tree level only

Loop-level only

1) Belle and Belle II

Will the next generation perform as well as the first?

Why B physics at the $\mathrm{Y}(4 \mathrm{~S})$?

- The process $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$ has comparable cross section to $e^{+} e^{-} \rightarrow q \bar{q}, q=u, d, s, c$ a.k.a. continuum

Why B physics at the $Y(4 S)$?

- The process $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$ has comparable cross section to $e^{+} e^{-} \rightarrow q \bar{q}, q=u, d, s, c$ a.k.a. continuum
- Advantages compared to proton-proton
- Low average multiplicity - neutral reconstruction
- Constrained kinematics - good missing momentum reconstruction
- Correlated $B^{0} \bar{B}^{0}$ - high flavour-tagging efficiency
- Open trigger - 100\% efficient for almost all B decays

Why B physics at the $Y(4 S)$?

- The process $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$ has comparable cross section to $e^{+} e^{-} \rightarrow q \bar{q}, q=u, d, s, c$ a.k.a. continuum
- Advantages compared to proton-proton
- Low average multiplicity - neutral reconstruction
- Constrained kinematics - good missing momentum reconstruction
- Correlated $B^{0} \bar{B}^{0}$ - high flavour-tagging efficiency
- Open trigger - 100\% efficient for almost all B decays
- Disadvantages compared to proton-proton
- Cross section - 150,000 times smaller
- No B_{s}, B_{c}, or Λ_{b} produced - can run at $Y(5 S)$ for B_{s}
- No boost in the c.m. frame - partially overcome by the asymmetric beams

Detectors and data samples

- Belle + BaBar collected
$0.71+0.43=1.14 \mathrm{ab}^{-1} \mathrm{Y}(4 \mathrm{~S})$ samples
- Many achievements: confirmation of KM mechanism, $b \rightarrow c \tau v$, direct CPV in B decay

Detectors and data samples

- Belle + BaBar collected
$0.71+0.43=1.14 \mathrm{ab}^{-1} \mathrm{Y}(4 \mathrm{~S})$ samples
- Many achievements: confirmation of KM mechanism, $b \rightarrow c \tau v$, direct CPV in B decay
- SuperKEKB + Belle II@KEK, Tsukuba
- nanobeam scheme to increase instantaneous luminosity by factor 30 to collect multi-ab ${ }^{-1}$ sample
- World record $4.7 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Target $6 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- So far $362 \mathrm{fb}^{-1}$ at $\mathrm{Y}(4 \mathrm{~S})$
- + $42 \mathrm{fb}^{-1}$ off-resonance to characterize continuum

Detectors and data samples

- Belle + BaBar collected
$0.71+0.43=1.14 \mathrm{ab}^{-1} \mathrm{Y}(4 \mathrm{~S})$ samples
- Many achievements: confirmation of KM mechanism, $b \rightarrow c \tau v$, direct CPV in B decay
- SuperKEKB + Belle II@KEK, Tsukuba
- nanobeam scheme to increase instantaneous luminosity by factor 30 to collect multi-ab-1 sample
- World record $4.7 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Target $6 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- So far $362 \mathrm{fb}^{-1}$ at $Y(4 \mathrm{~S})$
- + $42 \mathrm{fb}^{-1}$ off-resonance to characterize continuum

τ mass measurement

- Fundamental parameter of the standard model
- Important input to lepton-flavour universality tests
$R_{e}=\frac{\mathcal{B}\left[\tau^{-} \rightarrow e^{-} \overline{\nu_{e}} \nu_{\tau}\right]}{\mathcal{B}\left[\mu^{-} \rightarrow e^{-} \overline{\nu_{e}} \nu_{\mu}\right]} \quad\left(\frac{g_{\tau}}{g_{\mu}}\right)_{e}=\sqrt{R_{e} \frac{\tau_{\mu}}{\tau_{\tau}} \frac{m_{\mu}^{3}}{m_{\tau}^{3}}\left(1+\delta_{W}\right)\left(1+\delta_{\gamma}\right)} \quad$ (δ s are radiative corrections)

τ mass measurement

- Fundamental parameter of the standard model
- Important input to lepton-flavour universality tests

$$
R_{e}=\frac{\mathcal{B}\left[\tau^{-} \rightarrow e^{-} \overline{\bar{e}_{e}} \nu_{\tau}\right]}{\mathcal{B}\left[\mu^{-} \rightarrow e^{-} \overline{\nu_{e}} \nu_{\mu}\right]} \quad\left(\frac{g_{\tau}}{g_{\mu}}\right)_{e}=\sqrt{R_{e} \frac{\tau_{\mu}}{\tau_{\tau}} \frac{m_{\mu}^{3}}{m_{\tau}^{3}}\left(1+\delta_{W}\right)\left(1+\delta_{\gamma}\right)} \quad \text { (ठs are radiative corrections) }
$$

- We use the pseudomass variable to determine mass

τ mass measurement

- Fit to distribution with analytic form that accounts for ISR and resolution

τ mass measurement

- Fit to distribution with analytic form that accounts for ISR and resolution
- Knowing the scale key: beam energy (from $\mathrm{E}_{\mathrm{B}}{ }^{*}$) and momentum (from D mass)

τ mass measurement

> World's most precise measurement to date
> - dominant systematics from beam energy and momentum scale

Light dark sector searches

Dark Sector Candidates, Anomalies, and Search Techniques

- Can access the mass range favored by light dark sector
- Possible sub-GeV scenario

Light dark sector searches

Dark Sector Candidates, Anomalies, and Search Techniques

- Can access the mass range favored by light dark sector
- Possible sub-GeV scenario
- DM weakly coupled to SM through a light mediator X :
- vector (Z'/dark photon), axion like particles (ALPs), scalar (dark Higgs) or fermions (sterile v)
- Some links to anomalies, e.g., g-2

Invisible decay of Z' to dark matter

- Search for narrow peak in the recoil mass of dimuon pairs

Invisible decay of Z' to dark matter

- Limits on Z^{\prime} coupling g' and mass
- $g_{\mu}-2$ region ruled out for masses from 0.8 to 5 GeV

Phys. Rev. Lett. 130, 231801 (2023)

....back to the B and $C P$ violation

B-factory analysis essentials 1 beam constrained kinematics

Reconstructed B 4-momentum

B-factory analysis essentials 2 continuum suppression

- In the c.m. frame B mesons almost at rest when they decay
- isotropic distribution of particles

vs.

- In the c.m. frame continuum qq back-to-back
- jetlike distribution of particles

B-factory analysis essentials 2 continuum suppression

- In the c.m. frame B mesons almost at rest when they decay
- isotropic distribution of particles
- In the c.m. frame continuum qq back-to-back
- jetlike distribution of particles
- Shape variables, e.g., thrust and Fox-Wolfram moments, help distinguish topologies
- Ideal task for machine-learning
- Output oft used as a fit variable

B-factory analysis essentials 3: hadronic tag

- Full-reconstruction of one B decay in a large number of high BF modes on one side
- $B \rightarrow D^{(*) 0} m \pi^{ \pm} n \pi^{0}$, where $m \geq 1 n \geq 0$
- Reconstruct other B as signal with missing energy

B-factory analysis essentials 3: hadronic tag

- Full-reconstruction of one B decay in a large number of high BF modes on one side
- $B \rightarrow D^{(*) 0} m \pi^{ \pm} n \pi^{0}$, where $m \geq 1 n \geq 0$
- Reconstruct other B as signal with missing energy
- Machine learning algorithm used to boost efficiency as much as possible $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{T}^{-} \mu^{+}$
- Comput. Softw. Big Sci. 3 (2019) 1, 6
- Total efficiency < 1% but a powerful tool
- Requires calibration

B-factory analysis essentials 4 vertexing and flavour tagging

B-factory analysis essentials 4 vertexing and flavour tagging

B-factory analysis essentials 4 vertexing and flavour tagging

Time-dependent $C P$ violation - $B^{0} \rightarrow \eta^{\prime} K_{S}^{0}$

- Decay may also have a BSM phase as it is a gluonic penguin
- alter the value of ϕ_{1} from that measured in $b \rightarrow c \bar{c} s$ transitions such as $B^{0} \rightarrow J / \psi K_{S}^{0}$

Time-dependent $C P$ violation - $B^{0} \rightarrow \eta^{\prime} K_{S}^{0}$

- Decay may also have a BSM phase as it is a gluonic penguin
- alter the value of ϕ_{1} from that measured in $b \rightarrow c \bar{c} s$ transitions such as $B^{0} \rightarrow J / \psi K_{S}^{0}$

- Reconstructing $\eta^{\prime} \rightarrow \eta(\gamma \gamma) \pi^{+} \pi^{-}$and $\eta^{\prime} \rightarrow \rho\left(\pi^{+} \pi^{-}\right) \gamma$ we select 829 ± 35 events in $362 \mathrm{fb}^{-1}$ sample
- 3 D fit to $\Delta \mathrm{E}, \mathrm{m}_{\mathrm{BC}}$ and continuum suppression output

Belle II paper in preparation

Time-dependent $C P$ violation - $B^{0} \rightarrow \eta^{\prime} K_{S}^{0}$

- Decay may also have a BSM phase as it is a gluonic penguin
- alter the value of ϕ_{1} from that measured in $b \rightarrow c \bar{C} S$ transitions such as $B^{0} \rightarrow J / \psi K_{S}^{0}$
- Reconstructing $\eta^{\prime} \rightarrow \eta(\gamma \gamma) \pi^{+} \pi^{-}$and $\eta^{\prime} \rightarrow \rho\left(\pi^{+} \pi^{-}\right) \gamma$ we select 829 ± 35 events in $362 \mathrm{fb}^{-1}$ sample
- 3D fit to $\Delta E, m_{B C}$ and continuum suppression output
- $\sin 2 \phi_{1}=0.67 \pm 0.10 \pm 0.04$
- Consistent with current HFLAV average and that from $b \rightarrow c \bar{c} s$ result

$B \rightarrow K \pi$ isospin sum rule

- Relates these various penguin modes to give a null test of the SM with O(1\%) SM precision - PRD 59, 113002 (1999)

$$
I_{K \pi}=\mathcal{A}_{K^{+} \pi^{-}}+\mathcal{A}_{K^{0} \pi^{+}} \frac{\mathcal{B}\left(K^{0} \pi^{+}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2 \mathcal{A}_{K^{+}} \pi^{0} \frac{\mathcal{B}\left(K^{+} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2 \mathcal{A}_{K^{0} \pi^{0}} \frac{\mathcal{B}\left(K^{0} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)}
$$

- All inputs measured at Belle II including 'no vertex' time-dependent $C P$ asymmetry for $B \rightarrow K^{0} \pi^{0}-362 \mathrm{fb}^{-1}$ sample

$B \rightarrow K \pi$ isospin sum rule

- Relates these various penguin modes to give a null test of the SM with O(1\%) SM precision - PRD 59, 113002 (1999)

$$
I_{K \pi}=\mathcal{A}_{K^{+} \pi^{-}}+\mathcal{A}_{K^{0} \pi^{+}} \frac{\mathcal{B}\left(K^{0} \pi^{+}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2 \mathcal{A}_{K^{+} \pi^{0}} \frac{\mathcal{B}\left(K^{+} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\gamma_{B^{0}}}{B^{+}}-2 \mathcal{A}_{K^{0} \pi^{0}} \frac{\mathcal{B}\left(K^{0} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)}
$$

- All inputs measured at Belle II including 'no vertex' time-dependent $C P$ asymmetry for $B \rightarrow K^{0} \pi^{0}-362 \mathrm{fb}^{-1}$ sample

$$
\begin{aligned}
B= & (14.2 \pm 0.4 \pm 0.9) \times 10^{-6} \\
& \text { Large } \pi^{0} \text { efficiency syst. }
\end{aligned}
$$

$$
A_{K^{0}}=-0.01 \pm 0.12 \pm 0.05
$$ Combination of time-dependent and time-integrated analyses

$B \rightarrow K \pi$ isospin sum rule

- Relates these various penguin modes to give a null test of the SM with O(1\%) SM precision - PRD 59, 113002 (1999)

$$
I_{K \pi}=(-3 \pm 13 \pm 5) \%
$$

Agrees with SM. Competitive with WA: $(-13 \pm 11) \%$.

Paper in preparation

$\boldsymbol{\gamma} / \phi_{3}$: power of Belle + Belle II

- Standard candle in the SM
- Tree-level only + no theory unc.
- LHCb leads the way: $\gamma=(63.8 \pm 3.6)^{\circ}$
- LHCB-CONF-2022-003

Paper in preparation

Y/ $\boldsymbol{\phi}_{3}$: power of Belle + Belle II

- Standard candle in the SM
- Tree-level only + no theory unc.
- LHCb leads the way: $\gamma=(63.8 \pm 3.6)^{\circ}$
- LHCB-CONF-2022-003
- Several Belle (711 fb-1) + Belle II measurements (varying sample size) - total $\mathrm{O}\left(1 \mathrm{ab}^{-1}\right)$
- $\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{s}}^{0}$ hh - JHEP 02 (2022) 063
- $\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K} \pi$ - accepted by JHEP
- $\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{S}}^{0} \pi^{0}$, KK - arXiv:2308.05048
- + Belle-only $D \rightarrow K \pi$ and others
- A few a^{-1} will give a good cross check of this SM parameter

Commercial break

Commercial break


```
4) Lepton flavour/universality violation and rare decays
```


Measurement of $R(X)$

- Inclusive ratio $R(X)=\frac{B F(B \rightarrow X \tau v)}{B F(B \rightarrow X l \nu)}$
- A complementary alternative to $R\left(D^{(*)}\right)$
- Hadronic-tagging method with a $189 \mathrm{fb}^{-1}$ Belle II sample

Measurement of $R(X)$

- Inclusive ratio $R(X)=\frac{B F(B \rightarrow X \tau v)}{B F(B \rightarrow X l \nu)}$
- A complementary alternative to $R\left(D^{*}\right)$
- Hadronic-tagging method with a $189 \mathrm{fb}^{-1}$ Belle II sample
- Use missing-mass squared and lepton momentum to isolate signal above $B \rightarrow$ Xlv background
- Background templates calibrated to control samples and sidebands

Measurement of $R(X)$

- Inclusive ratio $R(X)=\frac{B F(B \rightarrow X \tau v)}{B F(B \rightarrow X l v)}$
- A complementary alternative to D/م(*)

$R(X)=0.228 \pm 0.016$ (stat) ± 0.036 (syst)

Systematics dominated by control sample reweighting procedures First at B factories
Agrees with SM prediction and the WA R($\left.\mathrm{D}^{(*)}\right)$ values

- Background templates calibrated to control samples and sidebands

$B^{+} \rightarrow K^{+} v \bar{v}$: Motivation

- Well known in SM but very sensitive to BSM enhancements - $3^{\text {rd }}$ gen
- $B\left(B \rightarrow K^{+} v v\right)=(5.6 \pm 0.4) \times 10^{-6}$ [arXiv:2207.13371]

$B^{+} \rightarrow K^{+} v \bar{v}$: Motivation

- Well known in SM but very sensitive to BSM enhancements - $3^{\text {rd }}$ gen
- $B\left(B \rightarrow K^{+} v v\right)=(5.6 \pm 0.4) \times 10^{-6}$ [arXiv:2207.13371]
- Challenging experimentally
- Low branching fraction with large background
- No peak - two neutrinos leads to no good kinematic constraint

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \overline{\boldsymbol{v}}:$ Analysis strategy

- Two methods: an inclusive tag (8\% efficiency) and conventional hadronic tag (0.4% efficiency)
- many common features except tag

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \overline{\boldsymbol{v}}:$ Analysis strategy

- Two methods: an inclusive tag (8\% efficiency) and conventional hadronic tag (0.4% efficiency)
- many common features except tag
- Use event variables to suppress background
- Inclusive:

1. preselect events where missing momentum and signal kaon well reconstructed

2. First boosted decision tree (BDT1): 12 variables
3. Second BDT2: 35 variables -3 times sensitivity

$B^{+} \rightarrow K^{+} \boldsymbol{v} \overline{\boldsymbol{v}}:$ Analysis strategy

- Two methods: an inclusive tag (8\% efficiency) and conventional hadronic tag (0.4% efficiency)
- many common features except tag
- Use event variables to suppress background
- Inclusive:

1. preselect events where missing momentum and signal kaon well reconstructed

2. First boosted decision tree (BDT1): 12 variables
3. Second BDT2: 35 variables -3 times sensitivity
4. BDT2 fit extraction variable in bins of $v \bar{v}$ mass-squared $-q^{2}$

- Hadronic tag: single BDT for fit
- key variable any additional calorimeter energy other than K+tag

Belle II paper in preparation

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \overline{\boldsymbol{v}}$: Inclusive signal extraction

- 1 signal and 7 background templates from simulation
- corrected using control samples
- Profile maximum likelihood fit inc. systematic uncertainties
- Continuum template constrained by offresonance

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \overline{\boldsymbol{v}}$: Inclusive signal extraction

$\left(3\right.$ bins in $\left.q^{2}{ }_{\text {rec }}\right) \times\left(4\right.$ bins in $\left.\mu\left(\mathrm{BDT}_{2}\right)\right)$

- Continuum template constrained by offresonance

Belle II paper in preparation

$B^{+} \rightarrow K^{+} \boldsymbol{v} \overline{\boldsymbol{v}}:$ Efficiency validation

$B^{+} \rightarrow K^{+} \nu \bar{v}:$ Efficiency validation

Ratio between selection on data and simulation for the control sample 1 with 3% uncertainty

$B^{+} \rightarrow K^{+} \boldsymbol{v} \bar{v}:$
 $>90 \%$ background from $B \rightarrow D\left(K^{+} X\right) \mid v+B \rightarrow D\left(K_{L} X\right) K^{+}$

- KX system agrees well between data and MC
- Prompt K^{+}production studied using prompt π^{+}from $\mathrm{B}^{+} \rightarrow \pi^{+} X$ decays
- Systematic uncertainties on decay branching fractions, enlarged for $D \rightarrow K_{L} X$ and $B \rightarrow D^{* *}$ V

$B^{+} \rightarrow K^{+} v \bar{v}$: Background validation example

- An example of a difficult background is charmless $B^{+} \rightarrow K^{+} K_{L}^{0} K_{L}^{0}$, where K_{L}^{0} mesons escape detection
- has an order of magnitude larger BF than signal

$B^{+} \rightarrow K^{+} \boldsymbol{v} \overline{\boldsymbol{v}}$: Background validation example

- An example of a difficult background is charmless $B^{+} \rightarrow K^{+} K_{L}^{0} K_{L}^{0}$, where K_{L}^{0} mesons escape detection
- has an order of magnitude larger BF than signal
- Dedicated studies $B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}$ show good modelling
- generous systematics assigned
- Similar studies for $B^{+} \rightarrow K^{+} n \bar{n}, B^{+} \rightarrow$ $K^{+} K_{L}^{0} K_{S}^{0}$

$B^{+} \rightarrow K^{+} v \bar{v}$: Systematic uncertainties

Source	Correction	$\begin{aligned} & \text { Uncertainty } \\ & \text { type } \end{aligned}$	$\begin{gathered} \text { Uncertainty } \\ \text { size } \end{gathered}$	Impact on σ_{μ}
Normalization of $B \bar{B}$ background	-	Global, 2 NP	50\%	0.88
Normalization of continuum background	-	Global, 5 NP	50\%	0.10
Leading B-decays branching fractions	-	Shape, 5 NP	$O(1 \%)$	0.22
Branching fraction for $B^{+} \rightarrow K^{+} K_{\mathrm{L}}^{0} K_{\mathrm{L}}^{0}$	q^{2} dependent $O(100 \%)$	Shape, 1 NP	20\%	0.49
p-wave component for $B^{+} \rightarrow K^{+} K_{\mathrm{S}}^{0} K_{\mathrm{L}}^{0}$	q^{2} dependent $O(100 \%)$	Shape, 1 NP	30\%	0.02
Branching fraction for $B \rightarrow D^{(* *)}$	-	Shape, 1 NP	50\%	0.42
Branching fraction for $B^{+} \rightarrow n \bar{n} K^{+}$	q^{2} dependent $O(100 \%)$	Shape, 1 NP	100\%	0.20
Branching fraction for $D \rightarrow K_{L} X$	+30\%	Shape, 1 NP	10\%	0.14
Continuum background modeling, $\mathrm{BDT}_{\mathrm{c}}$	Multivariate $O(10 \%)$	Shape, 1 NP	100% of correction	0.01
Integrated luminosity	Mitivariate O(10\%)	Global, 1 NP	1\%	< 0.01
Number of $B \bar{B}$	-	Global, 1 NP	1.5\%	0.02
Off-resonance sample normalization	-	Global, 1 NP	5\%	0.05
Track finding efficiency	-	Shape, 1 NP	0.3\%	0.20
Signal kaon PID	p, θ dependent $O(10-100 \%)$	Shape, 7 NP	$O(1 \%)$	0.07
Photon energy scale	-	Shape, 1 NP	0.5\%	0.08
Hadronic energy scale	-10\%	Shape, 1 NP	10\%	0.36
K_{L}^{0} efficiency in ECL	-17\%	Shape, 1 NP	8\%	0.21
Signal SM form factors	q^{2} dependent $O(1 \%)$	Shape, 3 NP	$O(1 \%)$	0.02
Global signal efficiency	-	Global, 1 NP	3%	0.03
MC statistics	-	Shape, 156 NP	$O(1 \%)$	0.52

$B^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \overline{\boldsymbol{v}}$: Results

$\mathrm{BF}_{\text {inc }}=(2.8 \pm 0.5$ (stat) ± 0.5 (syst) $) \times 10^{-5}$
$\mathrm{BF}_{\text {had }}=\left(1.1_{-0.8}^{+0.9}(\text { stat })_{-0.5}^{+0.8}(\right.$ syst $\left.)\right) \times 10^{-5}$
$B F_{\text {comb }}=\left(2.4 \pm 0.5(\text { stat })_{-0.4}^{+0.5}(\right.$ syst $\left.)\right) \times 10^{-5}$
$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \overline{\boldsymbol{v}}$: Results

$\mathrm{BF}_{\text {inc }}=(2.8 \pm 0.5$ (stat) ± 0.5 (syst) $) \times 10^{-5}$
$\mathrm{BF}_{\text {had }}=\left(1.1_{-0.8}^{+0.9}(\text { stat })_{-0.5}^{+0.8}(\right.$ syst $\left.)\right) \times 10^{-5}$
$\mathrm{BF}_{\text {comb }}=\left(2.4 \pm 0.5(\text { stat })_{-0.4}^{+0.5}(\right.$ syst $\left.)\right) \times 10^{-5}$

Post-fit distributions

Upper: full fit region

Lower: most sensitive region

Cross checks

- Multiple checks of the anallyses stability, including tests dividing data into approximately equal sub-samples. Reported here as measured branching fraction divided by SM expectation, $\mu=\mathrm{B} / \mathrm{B}_{\mathrm{SM}}$.
- Control measurement of $B^{+} \rightarrow \pi^{+} K^{0}$ decay

2023 results

1. Measurement of the Ds lifetime - world leading, arXiv: 2306.00365. Accepted
2. $Y(n S)$ dipion transitions - unique, paper in preparation
3. Search for ee $\rightarrow \omega \eta_{b}$ at 10.75 GeV - unique, paper in preparation
4. CPV in $B^{0} \rightarrow \eta^{\prime} K_{S}-$ unique, paper in preparation
5. CPV in $B^{0} \rightarrow K_{s} \Pi q$ - unique and world leading, paper in preparation
6. Improved B flavor tagging and sin2phi1 - paper in preparation
7. $R\left(D^{*}\right)$ - high profile - paper in preparation
8. $R(X)$ - high profile, unique - paper in preparation
9. Evidence for $B^{+} \rightarrow K^{+} \bar{w}$ - high profile, unique - paper in preparation
10. BF and asymmetries in $B \rightarrow \rho \gamma-$ unique, Belle + Belle II - paper in preparation
11. Search for $Z^{\prime} \rightarrow \mu \mu-$ paper in preparation
12. Energy-dependence of $B\left(^{*}\right) B\left(^{*}\right)$ bar cross section - unique - paper in preparation
13. Test of light-lepton universality in $B \rightarrow D^{*} \ell v$ decays - unique - arXiv: 2308.02023. Accepted.

From Diego Tonelli

14. Determination of the CKM angle γ from a combination of Belle and Belle II results - paper in preparation
15. Measurement of CKM angle γ using GLW - Belle + Belle II, arXiv: 2308.05048
16. Measurement of CKM angle γ using GLS - Belle + Belle I, JHEP 09 (2023) 146
17. Search for long-lived spin-0 mediator in $b \rightarrow s$ transitions - world leading, arXiv: 2306.02830
18. Measurement of of the t mass - world leading, PRD 108, 032006 (2023)
19. BF and ACP in $B^{0} \rightarrow h^{+} h h^{\sigma}$ decays and isospin sum rule - world leading - paper in preparation
20. ACP in $B^{0} \rightarrow K^{0} K^{0}{ }_{S} K^{0}{ }_{S}$ - paper in preparation
21. $|\mathrm{Vcb}|$ using untagged $B \rightarrow D^{*} \ell v$ decays - competitive - paper in preparation
22. CPV in $B^{0} \rightarrow K^{0} \pi^{0}$ decays - competitive, PRL 131, 111803 (2023)
23. CPV in $B^{0} \rightarrow \boldsymbol{\phi} K^{0}{ }_{S}$ - arXiv: 2307.02802. Accepted
24. Novel method for charm flavor tagging - unique, PRD 107, 112010 (2023)
25. Search for $\tau \rightarrow \ell \boldsymbol{\phi}-$ arXiv: 2305.04759 (conf note)
26. Observation of $B \rightarrow D\left(^{*}\right) K K s$ - world leading arXiv: 2305.01321 (conf note)

5) Prospects and conclusion

Belle II: after current shutdown

- We have not collected the sample size planned to date
- Beam conditions
- Since summer 2022 shutdown for accelerator upgrades to mitigate background and increase luminosity
- Detector upgrades too
- two-layer pixel detector installed
- On target to restart SuperKEKB in December
- Path to $\mathbf{2 \times 1 0 ^ { 3 5 }} \mathbf{c m}^{-2} \mathrm{~s}^{-1}$ but new final focus to go beyond
- Proposed upgrade from 2027
- J. Baudot FPCP 2023

Conclusion

- $\mathrm{e}^{+} \mathrm{e}^{-}$has an important role to play and a bright future in flavour
- Belle II is catching up to first generation sample size, we are producing competitive and exciting results
- A lot more to come once we enter the " 10^{35} era"
- Upgrade plans for reaching the 10 s of $a b^{-1}$

Backup

Belle Il upgrade

Belle III + ChiralSuperKEKB > 2030+

- Many plans and possibilities
- Work on a Conceptual Design Report begun to be delivered in 2023
- Followed by a Technical Design Report in 2024
- Shutdown end of

| EOI | Upgrade ideas scope and technology | Time scale |
| :--- | :--- | :--- | :--- |
| DMAPS | Fully pixelated Depleted CMOS tracker, replacing the current VXD. Evolution from ALICE ITS
 developed for ATLAS ITK. | LS2 |
| SOI-DUTIP | Fully pixelated system replacing the current VXD based on Dual Timer Pixel concept on SOI | LS2 |
| Thin Strips | Thin and fine-pitch double-sided silicon strip detector system replacing the current SVD and
 potentially the inner part of the CDC | LS2 |
| CDC | Replacement of the readout electronics (ASIC, FPGA) to improve radiation tolerance and x-talk | < LS2 |
| TOP | Replace readout electronics to reduce size and power, replacement of MCP-PMT with extended
 lifetime ALD PMT, study of SiPM photosensor option | LS2 and later |
| ECL | Crystal replacement with pure Csl and APD; pre-shower; replace PIN-diodes with APD
 photosensors. | > LS2 |
| KLM | Replacement of barrel RPC with scintillators, upgrade of readout electronics, possible use as TOF | LS2 and later |
| Trigger | Take advantage of electronics technology development. Increase bandwidth, open possibility of
 new trigger primitives | < LS2 and later |
| STOPGAP | Study of fast CMOS to close the TOP gaps and/or provide timing layers for track trigger | > LS2 |
| TPC | TPC option under study for longer term upgrade | > LS2 |

J. Baudot FPCP 2023

Belle paper in preparation

Angular coefficients in $\mathrm{B} \rightarrow \mathrm{D}^{*}$ Iv and V_{cb}

- Measure 4D-differential distribution in terms of decay angles and w
- overall proportionality to $\left|\mathrm{V}_{\mathrm{cb}}\right|^{2}$
- $w \geq 1$ is the hadronic recoil parameter - relates to mom. transfer to the leptonic system

Belle paper in preparation

Angular coefficients in $\mathrm{B} \rightarrow \mathrm{D}^{*}$ Iv and V_{cb}

- Measure 4D-differential distribution in terms of decay angles and w
- overall proportionality to $\left|\mathrm{V}_{\mathrm{cb}}\right|^{2}$
- $w \geq 1$ is the hadronic recoil parameter - relates to mom. transfer to the leptonic system
- Extract 12 angular coefficients of the distribution in bins of w for the first time
 using full Belle $711 \mathrm{fb}^{-1}$ sample
- hadronically tagged

Belle paper in preparation

Angular coefficients in $\mathrm{B} \rightarrow \mathrm{D}^{*}$ Iv and V_{cb}

- Measure 4D-differential distribution in terms of decay angles and w
- overall proportionality to $\left|\mathrm{V}_{\mathrm{cb}}\right|^{2}$
- $w \geq 1$ is the hadronic recoil parameter - relates to mom. transfer to the leptonic system
- Extract 12 angular coefficients of the distribution in bins of w for the first time
 using full Belle $711 \mathrm{fb}^{-1}$ sample
- hadronically tagged
- Fit performed to coefficients in different form-factor parameterizations and with LQCD inputs to extract V_{cb} as well as parameters of the form-factor model
- WA BF also taken externally


```
\[
\left|V_{\mathrm{cb}}\right|=(41.0 \pm 0.7) \times 10^{-3}\left(\mathrm{BGL}_{332}\right)
\]
\[
\left|V_{\mathrm{cb}}\right|=(40.9 \pm 0.7) \times 10^{-3}(\mathrm{CLN})
\]
```

G. Mohanty WG3

Belle search for $\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\tau}^{ \pm} \boldsymbol{l}^{\mp}$

- Lower bounds on branching fractions in $\mathrm{U}(1)$ leptoquark models at $\mathrm{O}\left(10^{-7}\right)$
- PRD 104, 055017 (2021)

Belle search for $\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\tau}^{ \pm} \boldsymbol{l}^{\mp}$

- Lower bounds on branching fractions in $\mathrm{U}(1)$ leptoquark models at $\mathrm{O}\left(10^{-7}\right)$
- PRD 104, 055017 (2021)

- Belle $711 \mathrm{fb}^{-1}$ data sample
- Hadronic tagging - then use tag, kaon and lepton four momentum to workout recoil mass

Belle search for $\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\tau}^{ \pm} \boldsymbol{l}^{\mp}$

- Lower bounds on branching fractions in $\mathrm{U}(1)$ leptoquark models at $\mathrm{O}\left(10^{-7}\right)$
- PRD 104, 055017 (2021)

- Belle $711 \mathrm{fb}^{-1}$ data sample
- Hadronic tagging - then use tag, kaon and lepton four momentum to workout recoil mass

$$
\begin{aligned}
& \mathcal{B}\left(B^{+} \rightarrow K^{+} \tau^{+} \mu^{-}\right)<0.59 \times 10^{-5} \\
& \mathcal{B}\left(B^{+} \rightarrow K^{+} \tau^{+} e^{-}\right)<1.51 \times 10^{-5} \quad \text { World } \\
& \mathcal{B}\left(B^{+} \rightarrow K^{+} \tau^{-} \mu^{+}\right)<2.45 \times 10^{-5} \\
& \mathcal{B}\left(B^{+} \rightarrow K^{+} \tau^{-} e^{+}\right)<1.53 \times 10^{-5}
\end{aligned}
$$

