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We study the dynamics of a supersonically expanding, ring-shaped Bose-Einstein condensate both
experimentally and theoretically. The expansion redshifts long-wavelength excitations, as in an expanding
universe. After expansion, energy in the radial mode leads to the production of bulk topological excitaions—
solitons and vortices—driving the production of a largenumberof azimuthal phonons and, atlate imes, causing
stochastic persistent currents. These complex nonlineardynamics, fueled by the energy stored coherently in one
mode, are reminiscent of a type of “preheating” that may have taken place at the end of inflation.

DOI: 10.1103/PhysRevX.8.021021 Subject Areas: Atomic and Molecular Physics,

__ Cosmology, Quantum Physics  after expansion to extract @, ;/@,, ;, shown in Fig. 2(c). At
T any given time, the phonon oscillation frequency is

@(t) = cg(t)m/R(t), where cgy(t) is the azimuthal speed

of sound at time . As the ring expands, both the atomic

We understand the phonon’s behavior during the expan-
sion epoch in terms of a 1D equation for the phonon
amplitude yz,,,

Expgriment ’ ’ \ 3
N

Atomic density (arb. units)

FIG. 1. Measured (top) and simulated (bottom) supersonic expansion of the ring with scale factor a = Ry/R; = 4.1(3), where
R; =46.4(14) um [R; = 11.3(4) um] is the final (initial) radius [44]. An initial distance d transforms into a larger distance d'.
The tme elapsed in the figure is approximately 15 ms. 2



Gravitational Waves in an Expanding Universe

* Perturbed FRWL metric (ignoring scalars and vectors):

ds® = —dt? + a®(t)[(6:; + hsj)da’dz’] [hij| <1
=0;h’, =0
* from Einstein equations
V2

a?

source: tensor

hZJ( ) —167 GHTT( ) < anisotropic stress
T/J,V - _/,u/ + 5Tp,1/

. . . ) 1 . ) 1 1
* Fourier transform, and polarisation components +, x Hubble radius —- = > and comoving Hubble radius — = -

hii (Z,t) + 3Hh ;i (Z,1) —

H a aH a
dsk —ik-x e’ k= comoving wave number
hij(x,t) = Z ~(k,t)e i (K k) "
r=1,X e;;(f{) = 1 T — ;7
ko ik e (K) = 1 o + Ay 1, "
1,] X t Z / k t 1K-X 'r (k) zy( )A | ;L 7 J .
r=4.% € (k) e (k) =20,

dt
* The equation decouples for each polarisation mode. In terms of conformal time 7 = / @

Y (k, 1) + 2H b, (k, n) + k2hy (K, 1) = 167Ga®IL, (k, 1)

Note from Friedmann equation: H? = H?a? = 87;Ga2p

Courtesy Daniele Steer
hitpe://indico.math.cnre.fr/event/5761/ contributions/ 4578/ attachmente/2769/ 3550/ lecture2.pdf
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Analogue Cosmology at Low Cost with a Varying Length Pendulum 2

During this era, the cxpansion of the universe is sufficiently rapid to create
particle, antiparticle pairs (Schrodinger, 1939, 1940; Parker, 1966; Sexl and
Urbantkc, 1969). Pair production by the gravitational field of the expanc Ing |

universe is analogous to excitation of a pendulum caused by changing the }
Ilcngth of its string. One can also picture the process as caused by gravntau- ;
wonal tidal forces sufficiently strong to pull pairs out of the vacuum. Although }
such pair production is already of some significance, the density of particles
newly created by the expansion remains small with respect to the density of
particles already present, until one goes back to a somewhat earlier era, when
the temperature was within a few orders of magnitude of the Planck tempera-
ture (10°2°K). An important feature of this particle creation is that it tends
to rapidly damp out initial anisotropies in the expansion of the universe, so
that by the time the temperature has fallen to 1099°K the expansion is
essentially isotropic (Zeldovich, 1970; Lukash and Starobinsky, 1974; Hu
and Parker, 1978; Hartle and Hu, 1980). There is also an interesting con-
nection between conformal invariance and particle creation which tends to
suppress the creation of quarks, leptons, and photons if the expansion is
isotropic (Parker, 1966, 1968, 1969, 1971). There is a possibility that this
connection may leave its mark on the baryon-to-entropy ratio (Parker, 1981).
L. Parker, Particle creation in expanding universeg, Bhysical Review Letters, 21 (8), p. 562 (1968).
L. Parker, Darticle Creation by the Expangion of the Univeé, Fundamentale of cogmic phygies, 7, p. 201-239 (1982).



The Varying Length Pendulum

La vitesse du point M est [ cTt’ el son moment par

db
2 —— .
rapport a l'axe passant en () est [ T
Fig. 1.
vue pratique, que, par le fait des oscillations, la tension du fil étant va- 0

riable, la force nécessaire pour enrouler uniformément le fil sur un treuil
ne saurait non plus demeurer constante.

T/m = gcosf +1(0)> —1

e e - v —— e - ot o - W - -

Les forces extérieures se réduisent a la gravité g,
appliquée en M, dont le moment est g/sinf.

Quand 6 augmente, cette lorce tend a diminuer
I'angle. On aura donc, d’aprés le théoréme rappelé,

d db :
2 , —
o7 (l !t>+élsm0 0.

On en déduira 'éguation différentielle
q

o +

N m
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Mmolette l
= 9—|—2l6’—|—w sin(6) = 0

faux-carré  C.Boseut, Sur le mouvement dun pendule dont la longueur et

variable, Mémoireg de ['Académie Royale deg Scienceg de
Parig, lale 5 Septembre 778, p. 199-209 (I778).

J-\. Haton de La Goupilliere, Oscillationg deg bennes non

Boseut quidées, Annales deg mineg, |5 (10), p. 531-577, Juin (1I909).

parameter httpg://patrimoine.mineg-parigtech.fr/

|_ J recette —

machine d'extraction

T/m—gcosé’—l—l(é’) — 1
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Quelques Croquis charb:)nﬁés sur GERMINAL, de ZOLA, — par A ROBIDA P
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ked at the bottom of 4

hollow...ceemed fo have a greedy beagt, crouching there
to eat the world. And the Voreux, at the bottom of hig hole, with hig pile of wicked beagts,
crughed himgelf more, breathed with bigger and longer breath,

looking embarragsed by hig paintul digestion of human flesh. »
Emile Zola, Germinal (I885).

Cuffat : Wooden tub, sugpended from a cable and uged in mine shafts
to trangport material and personnel.
Until the middle of the [9th century, the miner descended into a cuftat, a gort of wooden half-barrel,
surrounded by iron, forming both a bagket for the personnel and a container for the coal, a cuffat

suspended at the end of the extraction cable and circulating in the well without vertical guidance.
E. Qehneider, Le®Charbon (1945)
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1 Les cables de traction

il'y en a au minimum deux,
capables a eux seuls de supporter
7 fois le poids de la cabine.
Maisilyenaengénéralde3a

5 pour une sécurité maximale.

3 Le limiteur de vitesse
Un cable indépendant fixé sur deux
~ poulies et relié a la cabine sert de cap-

teur de vitesse. La poulie supérieure

est équipée d’'un limiteur de vitesse

meécanique qui se bloque en cas de

survitesse et enclenche les sécurités.

AVITESSE
S NORMALE,
Poulie LE GALET
Came RESTE COLLE
A LA CAME

traction

uide de @ Galet
I’ascenseur L\ - Levier

Cable du
limiteur

2 Lopérateur de porte

Pour éviter les chutes, les portes
extérieures sont manceuvrées
par les portes intérieures de
|"ascenseur. Elles se connectent
entre elles mécaniquement via

le sabre. A la fermeture, un circuit

€lectrique teste tous les verrous, —___ Guide du

avant de laisser partir la cabine. contrepoids Limiteur de vitesse
AU DESSUS DE
LAVITESSE NOR-
4 MALE, LE GALET
Le parachute SE DECOLLE ET LA
Il agit comme une pince qui vient ROUE SE COINCE

LCaisson
des notelus
electriques

SN

serrer les guides métalliques de cha-
que coté de 'ascenseur et en freiner
la chute. La pince est actionnée

par le blocage du limiteur de vitesse.

Limiteur
vitesse *

LE LIMITEUR DE
VITESSE SE BLO-

. LELIMITEUR DE
. VITESSETOURNE,
LE PARACHUTE
EST RELACHE

Parachute:

Guide w

5 Lamortisseur

Il amortit I’arrivée en bout de course de

la cabine ou du contrepoids. L'ascenseur
n‘ira pas plus loin car le cable se détend
et le moteur n’a plus prise sur lui.

COMMENT
C A MARCHE

Cabine

L'ascenseur fonctionne comme une
bascule. D'un coté du cable, la ca-
bine, a I'autre bout, un contrepoids
qui pése le poids de la cabine plus
I'équivalent d'une demi-charge.

Les deux poids se compensent et

le moteur qui entraine le cable n’a
qu’un travail réduit a fournir pour
déplacer I'ensemble. Le principe est
donc simple et toute la difficulté est
de le faire opérer en toute sécurité.
De nombreux systemes empéchent,
préviennent ou pallient tout imprévu.

AmortiSSeur

Les bennes guidées sont commodes et n’offrent pas les
meémes dangers. Dans un puils guidé, on n’a pas a re-
douter la rencontre des beunes ni leur accrochage contre
les parois, mais il y aura les mémes précautions a pren-
dre pour ce qui concerne la solidité du matériel et les
mesufps relatives & la sureté des ouvriers.



Bossut-Lemaitre-Hubble Friction”in Clasgical Mechanics
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Supposons que la corde soit enroulée sur le treuil a une vitesse constante : / = [y +at. Aveca < 0, le charge 1 N
remonte et @ > 0 elle descend. Dans ce cas, I'équation (1) peut s’écrire :
NN
&6 246 g . o—0o ) )
— +757+—5;sinf= r L M r
a2 TTa @ G086 iljﬁu it
V ‘.J V4 Y
A Pinstant initial ¢ = 0, la corde fait un angle &, petit, avec la verticale et la longueur vaut /. On abandonne 2
la charge et la corde commence a s’enrouler sur le treuil a vitesse constante. Sur le graphique ci-dessous, on 9 1 2 3 &4 S5 & 7 & 9§ 10 12 13 14 15 16 17 18 19 20
constate que les oscillations de la charge augmentent en amplitude au cours de la montée. Dans cet exemple,
Iangle initial vaut 6, = 15°, la longueur initiale /, = 20 m et la corde s’enroule autour du treuil a la vitesse de

1 m/s. La charge est remontée sur une hauteur de 19 m. hﬂ'pg'//meluglﬂeQU.Org/QgraCUQQ/G/prFIOkQ/pQHdU[99/
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Edgar Allan Poe’s Linearly Varying Length Pendulum

Constant Lengthening Rate

Oath of the Pendulum
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Figure 3:
From top left clockwise: 1. The Angle, 2. The Sweep,

3. The Linear Velocity, 4.|Zhe Angular Velocity.



[O1l Solvay Conference

Mr. Lorentz recalle a convereation he had with Mr. Eingtein come time ago, in which there
was talk of a gimple pendulum that could be ghortened by holding the wire between two
fingers and gliding towardg the down. Suppoge that, at the beginning, the pendulum hag

exactly one element of enerqy guch that it corregponds to the frequency of ite ogcillations,

it then geemg that at the end of the experiment ite energy will be legg than the element

which corregponds to the new frequency.

Mr. Eingtein. — [t we modity the length of the pendulum infinitely slowly, the energy of t

Ne

oscillation remaing equal to hv, if it wag originally equal to hv: it varieg proportionally to +
frequency.

La Theéorie du Rayonnement et leg Quanta, report of the (91l Solvay Conference, Gauthier-Villarg, 1912, p. 450.
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WKBJ Approximation

10 + 210 + gsinf = 0

L =1(2)
<<l 10+200+g0~0

A(t) = A(t)e?D)  o(t) = / t w(t")dt’
0= (A+ipA)e™
0= (A+iwA)e™
= (A+2Ad+idA — p>A)e'?

= (A+ 2iAw + iwA — wrA)e™?
= e ] '
L A il 2w +(g—w2) 10
l l l
- [ e
2 zw—l—z = 5 5 F 0 (7_&}) A~0

14




Congervation of Action (Ehrenfest’s Adiabatic Theorem)
wl

5t —
[

St >> 1

0 + w(t)?6 ~ 0

w? = g/l
A=—-24
2w
C
A_w1/2
EzlmA2w2
2
s
2 =95 - =
/ 1 4 = -

O. Ehrentest, Over adiabatische veranderingen van een stelgel in verband met e theorie de quanta,

Verelagen Kon. Akad. Ameterfdm, 25 pp. 412—433 (1916).



More (Vacua) is Different (Number of Particles)

All inertial coordinateg are related by a Lorentz trangformation
in a flat Minkowski space-time.

Hence, all possible vacuum stateg are the game, and <o ig the number operator.
Bagie modeg of particle wave-function can be decomposed into proper vibrationg”
that are clasgified ag either of positive- or negative-frequency (or energy) types.
Difterent obgerverg agree in their obgervationg of the same number of particles.

In a general gpace-time, modes can no more be claggitied ag
either of positive- or negative-frequency types.
Different gete of bagie modes may be found but without a preferred one:
the notion of vacuum and number operator now depends on the chogsen get.
Difterent obgervers will digagree in their observationg of the number of particles.
The concepts ot particle and vacuum areypaot global i.e. they are obgerver dependent.



Reflexion/Seattering of Light in a Homogeneous Space or
Creation/Production of Particles in an Expanding Universe

| The decomposmon of an 1rl)1tr1ry wave functlon mto proper

5,v1bratlons 1s r1 gorous, as far as th( fumtlons of space_ (an ht 1de-

UNctions) are conccrnoc which, by the way, “are exactly the same
as In the static universe. But it is known, that, with the latter, two
freucnues eudl but of opp site slr long to ey space func.

, tion. 1 hese two proper vibrations cannot be rlgorously separated m
 the expanding universe. That means to say, that if in a certam

| moment only one of them is present, the other one can turn up in the

cource of time.

’ What we can learn from this resu1t° In the classtcal case the

Generally\speaking this is a phenomenon of outstanding import-
ance. With particles it would mean production or anihilation of
ma‘rt r, merely by the expansion, whercas with light there would be

. a prodiretion o ight travel mg in the ()pp()blte direction, thus a sort §

of reflex1on of llght in 110mog< neous space. Alarmed by these pros- #
pec S, 1. ave imnves 1;.;11(( 1 qm Stion n more detail. 1 ortunately

E Qohroedmger The proper vubrahong of the expandmg universe, Dhgglca GUAIVAL (0 S0 (1939)

\momentum is fixed and we have two frequencies positive and negative
i corresponding to waves traveling in opposite directions. When 1n1tial-
t 1y we had only one wave propagating in a given fixed direction, then |

;;a wave propageting in opposite direction is created and the initial

&

! wave is amplified, which means thet a pair of particles with opposite §
fmomenta is created. Therefore particles are created in pairs and they ;
' are moving in opposite directions. DMomentum is conserved and this is ;
! natural because, due to symmetries of the background space-time, mo- |
‘Ementum has to be conserved. Since particles are created in pairs, in }
7the case of electromagnetic field we have to create simultaneously two i
photons and for this we need a portion of energy equal to 2*5»03 ._{:;

e Zel dovich, Creation of particles by gravug jonal field, Phygics of the Expanding Univerge,

Cracow School on Cosmology Jodtowy Dw

| September 1978 Poland, p. 60-80 (1978).



Let us now return to the classical calculations and instead of

working with electromagnetic field, which has many components, we will
restrict ourselves to a scalar field which satisfies the wave equation

2
DL?:%;‘%-ALP.-.O (7)

where unite are such that c = 1. The metric of the background space-

time we take in the form

as? = at? - a’(t)dax? - v2(t)ay? - c2(t)dz’ (8)
f{.ee with flat three-dimensional spatial sections t = const. Assuming
that

= £(t) M, (9)
the wave equation reduces to
2
d
-——-—g-z - wzf, (10)
dt
where
2 - - -
l&a2+k§b2+k202=w2(t). (11)

Simple Pendulum_s = +

(For one rumning wave A = A_, B = O one cannot define the phase by

taking 1 tHO 4y ctead of e 1Y since it is equivalent to spatial

displacement. The phase is important as a relation between Ao and Bo
or between A (k) and A (~k) which brings us back to standing waves.

The calculatian for one running wave A = A., B = 0 is already equiva-
£l ent 1O the phase—averaged calculation for standing wavese) 1n this
};simple case of homogeneous metric no mixing of modes occurs. One can &
;now work with a single mode and we have a situation similar to mechan—}
féical ogcillations with time depen?igf period (pendelum with slowly f
Wvarying length)e L

- n - ST i e B T2 Lem 2
o N - - 3 -~ - - N - _ N -



As is well known if ?qJ?is'gfoq yfvary; ff i77:hflwe can use th

adiabatic approximation and replace f = e

f=A e-ijwdto (13)

Allowing A to be time dependent (10) leads to

0=%+ w?f =21y f-1DF+ (P + (e, (14)

and neglecting gquadratic terms and higher derivatives we get

T=-72 (15)

This equation can be easily solved eand finally we obtain

The particle number in the limit of a smooth and

slow expandlng unlverge lg an adlabaﬂc lnvarlant A - _2“_:_ - TO the degree 0/ approxzmatzon 0/ E h ren / €S { S theorem there ZS ...‘
. - 4‘, w' 4 no mutual contammatzon o/ posztwe and negatzve /requency solulzons 3
Particles are NOT created. L ~ 2

;”Jéié“Ofé"'héﬂgéﬁéia‘ﬁébwuflbh’O’ﬁequa ion (10) in the adiabatic ap~- ;
‘proximation ie wa

| St="—>>1 |
Adiabatic x ~ifwat | B ifeoat a (17)

f = —=

! Pendulum Yoo Voo ’
where o( and ﬁ are constants but od= w(t). Now we can go fur-i

her to the post adiabatic approximation and assume that o and /3« i



’ﬁaéiéhéxoﬁ%imé; 'fh.tﬁi' case the decompositlon ‘of the field into pos—
(ltive and negative frequencies is not unique, We can use this freedom
to impose additional conditlons, ‘which are necessary to get rid of
some pathological situations. This method of solving equation (10)
was Iinvented by Lagrange.

Assuming that the first time derivatives of o , (3» and o
are small we can compute the first time derivative of f and get

-

f=- iOcV?e-indt-b ipmeiswdt (18)

This relation is true in the general case if

. 1 oo 1fwat

(& -5 Sa)e r(p-g2@eM =0 (19)

Equation (10) will be satisfied if in addition to (13) we have
- iotYwo '(— + )e-ifwdt + 1@4@'(7(53—4- %%)eif@dt = 0 (20)

From (19) and (20) we can compute & and (b

: . % = o2 {eodt wa
Non-Adiabatic *=z (3321 d St = —Q = O(l)(m)
Pendulum h= 3D wBtiva a

This system of coupled first order differential equations has a first
integral

(22)

To solve equations (2{)'we‘take'as‘initial conditions Kin = 10161n=
= 0, then we get in the first approximation

Bout = %f -‘g- m2ifwat 4o (23)



Mean Number of Particles and Mode Mixing

Of more interest is the fact that, apart from the normalization discussed
above, the initial plane wave solution, exp[i(k-x —w,;?)], evolves into the
superposition ag expli(k-x—wgt)]+ B explilk-x+wet)]. A wave packet
formed from a superposition of these solutions with wave numbers in a
fnarrow range near k moves at early times in the -~k direction. As a result of }
ithe expansion (or contraction) of the universe, at late times the wave packet §
has split into two parts, one moving in the +k direction and the other in the |
| —k direction. Ignoring the changes in normalization caused by the effect of i ,4
lhe expansion on the wavelength and frequency of the wave, one can say that }
;thc wave moving in the +k direction has grown in intensity from the value | i_
ito the value |ag|® = |+ |Bx|2. At the same time a backward moving wave }
,has been created with an intensity |8/,
“This can be interpreted in_the following heuristic way (rigorously justif ed
fin Section 3). If before the expansnon of the universe the mean number of |
iparticles movmg in the +Kk direction is 1, then after the expansion the mean §
inumber movmg in the +k direction is |+ |Bk|?, and the mean number]
movmg in the —k direction is [B¢|2. (For simplicity, suppose that the}
e rtnclc and antnpamcle of the field are the same, as for neutral ‘mesons. )

E Oarker, Larticle creahon in expandmg universes, Dhggloal Rewew Leﬁerg 2!( ) p. 562 (1968)
L. Parker, Particle Creation by the Expangion of the Univéi2e] Fundamentale of cosmic physies, 7, p. 201-239 (1982).



culpable alteration with regard to

MUtual AdUH'eration a given gystem of valueg and normg

We have quite intentionally called one proper vibration the terms con-
taining one particular spatial function w, but both solutions of f(t). The latter
correspond to what with R = Const. would be cos 2xvt and sin 2xvt; or, alter-
natnvely to e2™*! and e—2""**. Of course the two parts keep clear of each other
{also in the general case. But for assigning a quite general physical meaning to ]
this separatnon, one would have to k 10w, that an f(t) whicl during a perioc |
of constant R (or very slowly varying R) had the form (or approximately the
form) e2"*** will re-assume (or approximately re-assume) the form Ae?**** —

and not Ae?™*"* 4 Be=2"""* _ whenever R(t), after an intermediate period
of arbitrary variation, returns to constancy (or to approximate constancy).
1 can see no reason whatsoever for f(t) to behave rigorously in this way, and
{indeed I do not think it does. There will thus be a mutual adulteration of
{ positive and negative frequency terms in the course of time, giving rise to |

\

Schrodinger was offered a teaching position at Princeton but after extensive
negotiations he declined the position. It is thought that Princeton would not
house him with his wife and his mistress. Instead, he went to DUBLIN, to
the Dublin Institute for Advanced Studies, who obligingly provided said

housing arrangement.

While in Ireland, Schrodinger also fathered two children, by two different
women.

e E Schroedinger, The proper vibrationg of the expgd% universe, Phygica, 6 (7-12), p. 899-912 (1939).




Matching the Different Vacua
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Figure 9.1: Expansion scenario for particle production and a schematic sketch of the
calculation. The scenario for particle production starts and ends with a static space (region
[ and III). Between these regions, space expands/contracts during a period Az. The important
quantity for particle production is the evolution of the mode functions. In regions I and
ITI, modes oscillate. In region II, the evolution is described by the mode equation and
depends on the expansion itself. On the boundaries between regions, the mode functions
and their derivatives must be matched. This connects mode functions in region I and region
III, which in turn defines a Bogoliubov transformation between creation and annihilation
operators in these regions.

Celia Viermann, Cosmological particle production and curved gp% an ultracold quantum gag, Doctoral disgertation, June (2022).
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FIG. 2. Redshift of long-wave excitations. (a) Atomic density difference dn at various times for both experiment and simulation for a
mode number m = 2 and scale factor a = 4.1. The density scale of images after expansion is multiplied by 10. (b) Phonon amplitude vs
time for various a and m. The grey bands indicate the ime during which the BEC is inflated; their intensity denotes the expansion
velocity relative to that expansion’s maximum. Vertical dashed lines in the m = 2, a = 4.1 panel indicate the times shown in (a).
(c) Ratio of initial to final frequency vs scale factor a. Red circles indicate m = 1 modes; cyan squares, m = 2. The solid black curve is

the a¥7 expectation, and the colored curves (with mode numbers matching points) are the result of full Bogoliubov calculation.

PHYSICAL REVIEW LETTERS 128, 090401 (2022)

Editors' Suggestion

{Kccurate Determination of Fubble Attemuation and Amphfication]

m Expandmg and Contractlng Cold-Atom Umverses

S. Bamk M. Gutlerrez Galan H Sosa—Mamnez M. Anderson S. Eckel,”

I. B. Spielman®, "and G.K. Campbell l
'Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland,
College Park, Maryland 20742, USA
*Sensor Sciences Division, National Institute of Standards and Technology, and University of Maryland,
Gaithersburg, Maryland 20899, USA

® (Received 19 July 2021; revised 16 November 2021; accepted 7 February 2022; published 28 February 2022)

In the expanding universe, relativistic scalar fields are thought to be attenuated by “Hubble friction,”
which results from the dilation of the underlying spacetime metric. By contrast, in a contracting universe
this pseudofriction would lead to amplification. Here, we experimentally measure, with fivefold better
accuracy, both Hubble attenuation and amplification in expanding and contracting toroidally shaped Bose-
Einstein condensates, in which phonons are analogous to cosmological scalar fields. We find that the
observed attenuation or amplification depends on the temporal phase of the phonon field, which is only
possible for nonadiabatic dynamics. The measured strength of the Hubble friction disagrees with recent
theory [Gomez Llorente et al., Phys. Rev. A 100, 043613 (2019) and Eckel er al., SciPost Phys. 10, 64
(2021)]

DOI: 10.1103/PhysRevLett.128.090401 2 l
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FIG. 3. Phonon amplitude én as a function of time 7 for (a) expanding and (b) contracting tori. The symbols, curves, and grayscale bars
are all as notated in Fig. 2(d). The expansion data (a) used R; = 11.9(2) ym and R; = 38.4(6) um, and vice versa for contraction (b).
The red curves show simultaneous fits to a complete dataset, which includes all expansions or contractions.
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Congervation de Action d’Onde

[ E
=
22 =0
%—?—FV. (Acy) =0
% (w —Ek.U> e Kw —Ek.U> Cg} =

F. 0. Bretherton and C. J. Garrett, Wavetraing in inhomogeneous moving media, Proc. Roy. Soe. A. 302, p. 529-554 (1968)
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Green’s Law (I838)

No flow current.
Changing bathymetry.

Ec, = cste

E

= : = - Wy o = 1/4
E=5pga® A=TVih A= (5) (52)

G. Green, On the motion of waveg in a variable canal of small width and depth,
Trangactiong of the Cambridge Dhiloeophio@ie’rg, Vol. U, Part U, p. 457 (I838).



Waves in shallow water are described by the lincarised shallow water equations

du  On oy

o 95, =0 5, + 5o (how) =0, (10)
where u(x,t) is the horizontal fluid velocity, and iz, t) = hg(x) + n(x,t) is the water depth. The mean
depth with a flat free surface is fig( ), varying to refiect the bottom topography, and n(x, t) is the (small)
displacement of the free surface.

Eliminating u between the two equations (10), we obtain a modified wave equation for 7j(r, t),
& o
e JPLA (() ) an

whchmhlcsthcgmahscdlﬂcm—Ga’dmoqnanonﬁomptmmslccm with o = ghp(r) and
A = 0. Equation (11) may be rew o .

‘aho' 0”, 7
01' 01' a2
where the last term is the “form NNl o PP%c assume time-harmonic waves with
n(x,t) = y(r) cos(wt), zndmbstmm:ho(z) ,3: w\:obtammODEfonhcspamlvananoa\

d"'y dy w?

a2 v gzt gg¥ =" 3
Putting r — %(g:?,’u) 5° transforms this ODE into Bessel's equation of order 0,

Py 1dy

=2 tsa tY=0 a9
with solution as y = a.Jp(#), where a is an arbitrary constant. In terms of the original variable r,

2,

y(r) = ao (\/‘%r”’) . (15)

The other solution of Bessel's equation has a lopanthmic singulanity as » — 0.
From lecture 10, we recall that the asymptotic behaviour of .J for large arpument is given by

Jol&) ~ Tié cos(é —7/4) ast — oo, 6)
‘ -\ 1/2 » ]
n(z.t) ~a (’—m;) 4 cos (%le - rr;‘-d) cos(wt) as r — o0, T (a7

'v
with the promised 1--1/4behz\mofdx de of the free surface displacement.

~ -

Infact lhcmuma:yphaseappmxmauonm(IG)lsmmaﬂnblyaccurmfmé > l(secleftpmtme)
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The equation of motion is derived from the Lagrangian
equation

d 0L 9L
dL 96 06’

(117)

where L = K — V is the Lagrangian, given by

L= %m€292 - %mgf 6% + %mh2 —mg(ly — £). (118)

From this expression we reach the equation of motion

06 + 2h6 = — g8, (119)

d?6 dd g
b— +2—+ 560 =0, 120
TR TS (120)
which is the equation derived by Lecornu [64].
It is convenient to define the variable s = £/g or s =
at + b, where a = h/g and b = £y/g, from which we may
write the equation of motion as

d*6 do 9
— +2—+ — =0. 121
*ds? + ds + (121)
It is convenient to define the variable s=1£{/gors=
at + b, where a = h/g and b = £y /g, from which we may

write the equation of motion as

d20 do 0
2—+ = =0. 121
ds? + ds + (121)
Performing the change of variables defined by z = 24/s/a
and ¢ = z0 we reach the equation

d? d
dz‘f + z£ + (22 - 1)¢p = 0. (122)

https://browse.arxiv.org/pdf/2203.07262.pdf
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In this form, we see that the solutions are the Bessel
functions of first order Ji(z) and Yi(z) [68], that is,

(]5 = AlJl(Z) + A2Y1 (Z), (123)

where A; and Ay are constant.
1
9 = ;[Aljl(Z) + A2Y1 (Z)], (124)

which gives 6 as a function of ¢ if we recall that z = 24/s/a
and that s = at + b.

As we wish to get the solution for a very slow variation
of the length of the pendulum, which means that a is very
small, it suffices to consider the solution for large values
of z. For as z = 2y/s/a and considering a finite value of
s = at + b, z will increase as 1/a. Therefore, we use the
asymptotic expression of the Bessel functions [68], as did
Trutkov and Fock [66], namely

Ti(2) = (3)1/2 sin (2= 7). (125)

Tz

1z)= (%) v oon (z -3)- (126)

: hevvollu‘tion- :(;an thﬁs- éA \-Nrit‘.cen'as Y

2 v

Vs ——

a’ 4)

The nergy E of the pendulum is the ﬁst part of the

kinetic energy given by (115) plus the first part of the
potential energy given by (116),

E= % (8292 + £g02) , (128)

which can be written as

m do\>
E = 2 2 .2 2
2g [a y (ds) s6

Replacing the solution (127) in this equation, we reach
the following expression for the energy

(129)

2.2 2
mg“c mgc® |[g

E = = =, 130
2./s 2 14 (130)
where we have neglected terms of order equal or larger
that a. That is, the energy of the pendulum is propor-
tional to the inverse of v/Z, the Rayleigh relation. Bearing
in mind that the frequency is w = 1/ g/, we may wright

mgc?
2

E= w, (131)

and F/w is an adiabatic invariant.
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Inflation with a Scalar Field for a Constant Light Speed

= ~ cst S¢ = /dfil‘\/jg [—%M&w — V(d))]

a

58, = [dizy=g [——g 10,60, (56) x 2 — V(¢>)5¢-
= [ @'z [0, (V=90 0,0) (56) — V=V (6)58
= [ ey | o=, (Fara.e) - V)| s

N
1 - XA
\/_7961/ (\/jgg 6u¢) Viig)=0
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Physics of bubble oscillations

Werner Lauterborn and Thomas Kurz

are parametrically coupled to the radial dynamics R(7):

: R
g Gpm+ 3_dn.nz +((n—1) (

For an analytical treatment of nonspherical bubble
oscillation one usually assumes a nearly spherical bubble with
the surface perturbed only slightly to allow for a linearization
of the fluid-dynamical equations around the state of spherical
symmetry. The radial dynamics then is described to a
good approximation by the well-known, previously discussed
models, for example, the Rayleigh—Plesset equation (2). Let
rs(®, ¢; t) denote the location of the surface in a spherical
coordinate system with its origin at the bubble centre, and
R(t) be the time-dependent radius of the associated sphere
(figure 44). The surface perturbation is expanded into spherical
harmonics,

o0 n
rs@. i) =R +) D) anm®Yam(©,9). (24)

n=| m=—n

with time-dependent complex coefficients a,n(t). The
spherical harmonics are given by

Yo.m = Cnm P™ (cos ®) exp(img), (25)

where C, , denotes a normalization factor and Pn(’"’ is the
associated Legendre polynomial of the first kind. Each
spherical harmonic describes a surface mode with an
oscillation pattern having 2m node lines in the azimuthal
(¢-)direction and n nodes in the polar (®-)direction. The
coefficients a,, are the oscillation amplitudes of the
corresponding modes.  For small amplitudes a,, the
linearized fluid-dynamical equations yield a system of
mutually uncoupled, linear ordinary differential equations that

cm+hn+2) R\ 3
— % | Gnm = 0.3
R R) " 3

Ny

- ,R-,,~ " . _ o -

This model assumes incompressible, irrotational and inviscid
flow and thus does not take into account damping due to
viscosity. Inclusion of dissipation and vorticity gives a by
far more complicated descri Q]volving integro-differential
equations not considered here.



Ogcillations or [nstability

A proof of this analogy in the linear regime is easy to
obtain. In the classical paper in Ref. [4], Plesset develops the
linear perturbation equations of motion for an almost spherical
surface between two incompressible fluids,

Fin+ 32 + Waty = 0.5 (1)

Here R is the mean radius, and a, denotes the amplitude
of some mode with angular momentum number n. Denote by
o the surface tension coefficient, and by piy/0u: the densities
inside and outside the bubble, respectively. W, takes the form

O(2)(—R)(pow — pin) + O((2)’)o
Pin + Pout

W, = (2)

For large n, a, dynamics are much more rapid than those
of the radius, which can be regarded as quasistatic. Thus, for
W, > 0, the equation describes a damped/pumped harmonic
oscillator. Choice of damping or pumping is determined by
the sign of R. For empty bubbles, plugglng in pi, =0 we

3 "’vmg with the radius, and! ;

If acceleration and density gradient af€" 8T difierent signs,

and surface tension is small enough, it might be that W,, < 0.

In such a case, perturbation growth is exponential with the

rate ,/gk, corresponding to the linear growth rate of Rayleigh-
Taylor instabilities.

O Emanuel and A. Feigel, Turbulence and capillary waves ogbgbleg, Ohygical Review E, 104 (2), 025108 (2021)
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Macroscopic acousto-mechanical analogy of a microbubble
Jennifer Chaline,! Noé Jiménez,2 Ahmed Mehrem,? Ayache Bouakaz,® Serge Dos Santos,*® and Victor

J. Sanchez-Morcillo?

In the presence of an acoustic field, microbubbles can
be forced to oscillate in different ways. The most common
oscillation mode is the radial mode (Fig. 1), where the
bubble compresses and expands radially, maintaining its
spherical shape. The basic model describing the radial
dynamics of a bubble is the Rayleigh-Plesset equation for
the time dependent radius R(t)

s 3o\ 20 R

with p the density of the surrounding fluid, P, =

(Po — %%) (%‘1)37, the gas pressure inside the bubble, F,

is the hydrostatic pressure, Ry is the equilibrium radius
of the bubble, P4 the acoustic pressure, o the surface
tension of the bubble, p the dynamic viscosity and « the
polytropic exponent. Some generalizations of this model

R pR2

-

—— —an = (2
pR3 pR3 R) = B

i = z = i 3 - ' = R ) ) - S - ’ Ry

A. Progperetti, Viscoug effects on perturbed epherical flows,

Quarterly of Applied Mathematics, 34{4), p. 339-352 (1977)3 4

Pressure ()

) N
o - 0 Q o

n=4

O & 0 © O

FIG. 1. A bubble oscillating volumetrically within an acoustic
field. For positive and negative pressures, compression and
expansion phases are observed respectively.

whege isthesiscosity and o the surface tension. Defin-
’ ‘¥ the equation can be simplified as'®

=

(n—1)(n+1)(n+2)0 3R (n+ )R
pR3 4R? 2R

- 5% . == a - 5 - T - B R

Within this approach, each mode n obeys to the equa-
tion of a harmonic oscillator, with time dependent coef-
ficients. The resonance frequencies of the surface modes
readily follow from Eq. (7) by considering the static con-

dition R = Ry, and R = R = 0.

=) (n+1)(n+2)0o
o _\/ B , (®)

which is the Lamb expression for surface modes for a free

gas bubble.

b, = 0.4



The little lamb(da)
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Fig. 3 Sketch of Willem de Sitter (drawn as a “A™) in the Algemeen Handelsblad (July 9, 1930), as repro-
duced in Peebles (1993, p. 81). De Sitter says: “What, however, blows up the ball? What makes the universe
expand or swell up? That is done by lambda. No ogg answer can be given”



The expanding universe. Discussion of Lemaitre’s solution of the equations of the
inertial field, by /. de Silter.

1.

In B. A. N. 185 it was pointed out that neither of |
the two possible static solutions of the differential
equations

(1)

The differential equations.

(;.w-—;g‘w(;+7.gfn+ sz =0

can represent the observed facts of a finite density §
of matter in space and a systematic velocity of §
recession of the extragalactic nebulae proportional §
to the distance, and mention was made of the non- §

is &
the §
present article I will discuss some of the consequences §

static solution found by Dr. LEMAITRE, which
compatible with these two observed facts. In

in a notation slightly different from LLEMAITRE’s own. *)

The conditions of perfect spherical symmetry (iso-
tropy) and perfect homogeneity require the three- §

dimensional space to be of constant curvature, the
three-dimensional line-element thus being

(2) Rds® =R [dy’ + sin”y (@V" + sin®§ dF7)].

Tf'}': —&ii P> T =0, T« =&up
where p = p, + 3 2 is the “relative” density, po being
the material, or “invariant” density, and p is the

pressure, made up of the “kinematical” pressure

corresponding to the random motions of the particles, |

or “molecules”, of which the matter is conceived to
consist, and the radiation pressure corresponding to
the energy of radiation which may be present.

The four-dimensional line-element then is

ds’ = — R'ds” + fdf'.

In LEMAITRE's solution & and f are taken to be func-
tions of # alone. Since we can always put fds* = ¢*dr*

*) A full discussion is also contained in a paper by Professor
EDDINGTON on the instability of Emnstein’s spherical world, which

is to appear in the May number of the Moany z\otu'es of
the R.A.S.

l and use T as a new independent variable, we may take

f“* ¢®, ¢ being the velocity of light.
| The equations (1) then become, if we denote dif-
ferential quotients dfcd? by dots,

£ (4)

of this solution, and will begin by recapitulating it &

LEMAITRE puts

ﬁ

%o =

RJ

ch—"

j I‘he equat:on(4) can'then be wnttcn
| (4)

| The th i , '
Further the material energy tensor is assumed to be | e three equations (3) and (4), or (3) and (4) arc

Ra+3{j:

not independent of each other: (4') can easily be derived
- from (3). We will use the second of (3) and (4).
An assumption regarding «, or (3, must evidently be
added in order to make a complete solution possible.
The total volume of space is w* K3, consequently the
| total mass is, by (5), m*«/~. This LEMAITRE takes to
' be constant, and consequently by (4') £ is also constant.
LEMAITRE takes 3 = o.
If we put

6) y=RVL, A+d=ayh, e=3B.0,

A being a constant number, which must evidently be
| positive, then y, d, ¢ are pure numbers, independent
| of the choice of units.” The equations then become

=l =3y tAy+ydte
(7) 3 -
yc;‘—f-s:o.

3 6 It will be shown in article § that there is observational
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In Memory of A, A, Fridman

ALEKSANDR ALEKSANDROVICH FRIDMAN
(On the seventy-fifth anniversary of his birth)

P. Ya. POLUBARINOVA-KOCHINA
Usp. Fiz. Nauk 80, 345-352 (July, 1963)

Fridman’s investigations covered a very wide range.
From the beginning of his scientific career he was in-

terested in the basic questions of theoretical geophys- _, = The year 1922 saw the p \s lcation of Fridman’s f .,1
ics, such as the causes of temperature inversions, the ' book, ‘‘Experiment in the Hydromechanics of Com~ ?‘
theory of atmospheric vortices and wind gusts, the | oressible Liquids,’” which lay down the groundwork J
theory of discontinuities in the atmosphere, and the ) for theoretic meteoro oLy -
theory of atmospheric turbulence. He was also ready ¢ "Fridman made the point that in studying atmose

to tackle any question that had an immediate practical § pheric movements air must be regarded as a com- -.
application. Thus, early in his career, he drew up in-  § pressible baroclinic liquid, i.e., a liquid in which pres-|
structions for flying kites carrying meteorographs. - sure depends not only on density but on the temperature§

{

In meteorology, a baroelinic flow is one in which the density 4,as well. A factor to be taken into account is that the

. atio OSp ere recelves eat rom i e Sl.ln an oses
depends on both temperature and pressure. A barotropic .,/ rough radiation into outer space. Fridman’s aim

flow allows for density dependence only on pressure, g0 that  was to pose the basic general problems of the hydro-
the curl of the preseure-gradient force vanighes. dynamics of compressible liquids.

“Fridman also distinguishes the case of a compres- )

Dreroctinic = | (Q, T) i sible liquid in which the total derivative of density
jwith respect to time vanishes and consequently the |
e — f ( Q) tvelocity divergence is zero; he called this phenomenon

incompressible motion.

Ry ) ) = A - T - b _ = -



The waters [ gtep into have never been crogsed by anyone.”

A. A. Friedman

A. Friedmann, Uber
die Krammung deg
From my second note in Russian that I have sent to you, you have seen that under
‘Raumeg. Z phyg., certain assumptions common to those of Einstein and De Sitter it is possible to
obtain the universe with the space of a (spatially!) constant curvature, the radius
IO, 377"886 Lyen § of curvature of which is varying with time.
922) S |
- (h )[ N ~ - rerpanua . A. Friedmann, A.
ngligh tranglation: . : RSB g ' L =
0 = ah atio o A no6cTBa Orobue X, He ¢ pacT o= Uber die Moglichkeit
h the : :
- : vOEee YpesSHeHUWEe . 1 s einer Welt mit
curvature ot gpace by ' - A-2+ =K .
ature ot ¢pa el ad ;f{lf &l e kongtanter negativer
in Gen. Rel. Grauv,, 3|, et LAY A e
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= p = energy density

= energy flux components

= momentum density components

= p; = pressure components

L

density

= shear components (i = j)
,7=1,2,3
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momentum

{ Nous désignons par p la densité de I'énergie tofale, la densite” de

t i I’énergie rayonnante sera 3p et la densité de I’énergie concentrée dans la 2

‘ atlereestb:p—d N —
{1 faut identifier p et——-p avec 1es compoeantpx ) el =1, I du
tenseur d’énergie matérielle et d avec T. Calculons les composantes du ten-

seur de Riemann contracté pour un univers d’intervalle

—

1

do est ’élément de longueur d’un espace de rayon égal a un; le rayon R
de Vespace est une fonction du temps. Les équations du champ de
gravitation ’éerivent

ds* = — R*do® + d*

(2)

et

(3)

_—

ot 7
o [ e
}‘ a ‘ //’/":/. . -~ - . /,— < ——
A A b G

httpg://archiveg.uclouvain.be/ atom/index php/archiveg-de-georges-lemaitre

: constante. Nous _pourrons . alors poser.

G. Lemaitre, Un univers homogene de magge congtante et de rayon croisgant, rendant compte de la vitesge
radiale des nébuleuses extra-galactiques. Annales de la Societé Scientifique de Bruxelles, 474, 49-59 (1927).
Engligh tranglation: “A homogeoug universe with congtant mage and increaging radiug accounting for the

radial velocitieg of the radlal velocities of the extra- galachc nebulae,” Gen Rel Grav 45, 1635 1646 (20!5)

“Cherc hons une solation pour laquelle la ma«e tolale M ——-Vb demeure

(5)

- . g . _ - b _ Ry B kS . _ -

@ = 5 migprint

ot « est une constante. Tenant compte de la relation
p=20-+3p
existant entre les diverses sortes d’énergie, le principe de conservation de
I’énergie devient _
3d(pR®) + 3pR*dR =0 (7)

dont V'intégration est immédiate ; B desxgnant une constante d’intégration,
nous avons povaT— ‘

(8)
et done
)
Substituant dans (2), nous '1'i 1t"'
R™ A 1 Kp A o B
RE=3 RT3 T3 TR Tape TR (10)
ou
dR
JV g — gy + e
This was also Albert Einstein’s original feeling. On 13

April 1917 he wrote to Willem de Sltter 17

In any case. one thing stands. The general theory of
relativity allows the addition of the term Ag,,, 1n the
field equations. One day, our actual knowledge of the
composition of the fixed star sky, the apparent mo-
tions of fixed stars, and the position of spectral lines
as a function of distance, will probably have come
far enough for us to be able to decide empirically the
question of whether or not A vanishes. Conviction 1s
a good motive, but a bad judge.
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Viseo-Elastic Rayleigh-Plesset Equation

External Medium
Kinematic viscosity v Viscous stress
N

Mass density p 4nR/R
ou

Hypothegis:
Incompresgible flow ot

R . C.Lis) a compressible liquid

Compression

(cf. Friedmann’e 1922
OhD Thegia).

Wo = \/AP/PRS

Surface tension

Neutral surface

0 pR* dt*

l i

- (

-

A. N. Malmi-Kakkada & D. Thirumalai, Generalized Rayleigh-Plesget Theory for Cell Size
Maintenance in Virugeg and Bac’rea'-aéio@xiv preprint 552778 (2019)



Manipulating the Friedman-Lemaitre E quations
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ENTROPY GENERATION AND THE SURVIVAL OF PROTO-
GALAXIES IN AN EXPANDING UNIVERSE*
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III. ENTROPY PRODUCTION IN ISOTROPIC HOMOGENEOUS COSMOLOGIES
We now consider a universe described by the Robertson-Walker metric:

—gudxrdy’ = dit — RX(t)[dr*/(1 — kr?) + r%d6* + »* sin?® 0d¢?] . (3.1)
This is written in a comoving coordinate system, so the velocity is
Ur=U0'=0¢*=0; U'=1. (3.2)

It is straightforward to calculate the energy-momentum tensor (2.60) here as

(T = (0 — 5k/08) 3.3)
‘ T:i=0 . - (3.4)
iu P'_ R (35)

L - T

where now 1, 7, etc., run over the labels 7, 8, ¢. Thus, as far as the Einstein field equations
are concerned, the only effect of dissipation is to replace p with p — 3¢R/R. In particu-
lar, we still get precisely the same equation for R in terms of p as in the adiabatic case:

R? + k = 87pGR® . (3.6)

However, the bulk viscosity does appear in the conservation equation (2.63), which
here reads O I

=

¢ % (oRY) = —3RR(p — 3R/R) (3.7)
The particle conservation equation (2.64) is unafiected by dissipation:
d 3 —
£ (nRY = 0. (3.8)

THE ASTROPHYSICAL JOURN :175-194, 1971 September 1
@© 1971 The University of Chicago " AlT rights reserved Printed in U S A.



Bubble Puzzles

Bubbles are familiar from daily life and occupy an important
role in physics, chemistry, medicine, and technology. Never-
theless, their behavior is often surprising and unexpected—
and, in many cases, still not understood.

Detlef Lohse

propeller gets damaged. Rayleigh mathematically de-
scribed the dynamics® of such a collapsing void in water,
assumed to be spherical with radius R(¢), and laid the
foundation of what is now called the Rayleigh—Plesset
equation,®’

B =Lp,-R-P)]-4vi-22 @

RR+= :
2 p R pR

Here v denotes the kinematic viscosity, p, the gas pressure
inside the bubble (dependent on the radius), and P(¢) the

EC-OCDETET) X 11 1)
- SRt 5

f Rayleigh—Plesset dynamics can lead to energy focus-
fing, as can be seen by neglecting all terms on the right-§
fhand side of equation 4, that is, by considering only the in- §
fertial terms, RR+ 3/2R? = 0. Integration immediately %
ggives R(¢) = R[(z. — ?)/t.]?°, with the remarkable feature of §

! a divergent bubble-wall velocity as ¢ ap-|
i proaches the time Z. of the bubble collapse. 1t}

} cavitation damage. The collapse is eventually}
§ cut off by the adiabatic compression (and thus §
¥ heating) of the gas inside the bubble and by!
£ the sound emission at bubble collapse,® or in]|
§ many cases also by the disintegration of the
¥ bubble. The emitted sound pressure (equation §
. 3) obviously also diverges. ¥

ble also will oscillate periodically around the ambient ra-
dius R, that the bubble would have under static, ambient
conditions.

If instead the bubble is kicked with a single pressure
pulse, the bubble’s resonance frequency f,, survives longest;
all other frequencies damp out earlier. To calculate the res-
onance frequency, one needs the restoring force, which re-
sults from the pressure in the gas bubble. For large enough
bubbles, R, > o/P, = 1 um, the force depends on the am-
bient pressure P, and the actual radius R(¢), and the res-
onance frequency is given by?

1 [3yF,
fo g 9 °
2w\ pR,

(2)

Here vy is the adiabatic exponent, the ratio of the constant-
pressure and constant-volume heat capacities of the gas.
For air bubbles (for which y = 1.4) in water under stan-
dard conditions, equation 2 reduces to f,R, = 3 kHz mm.

Most remarkably, this eigenfrequency of bubbles can
be heard as the underwater sound of rain. When rain-
drops fall on a calm lake, the underwater sound is not gen-
erated at drop impact. Rather, at impact, a small air bub-
ble is entrained, as shown in figure 1. Due to the violent
entrainment process, the bubble experiences a pressure
kick and subsequently oscillates at its eigenfrequency.
We hear the corresponding sound emission from the re-

sulting pressure field

P(rt)= ﬂ(sz +RR) (3)

r

at large distances r from the bubble at the delayed time
t' =t + r/c, where c is the speed of sound in water. Typi-
cally, the entrained bubble has a radius of about 0.2 mm,
corresponding to a resonance frequency around f =
15 kHz, which is in the audible range. If the raindrop is
too small or too large, no bubble is entrained and the sound
is shut off. Correspondingly, surfactants can suppress air
entrainment and the sound of rain.*



Radius
Initial
Radie First Rebound
80 |- +
s0 |
Growth
=
20}
0 >
A 4 f * Time
Low Pressure First Second
Period Collapse

Figure 3. Typical bubble radius response to an episode
of low pressure according to the Rayleigh-Plesset
equation.

100 —
80 — 1.7

A Pa [bar]

0 10 20 30 40
t [ps]

Figure 4. Sequence of calculated steady state bubble oscillations for
different acoustic pressure amplitudes p, in the giant response
region (Gilmore model). Bubble radius at rest R, = 7 um, driving
frequency v, = 25kHz. (Courtesy of R Geisler.)
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Figure 32. Decaying bubble oscillation in silicone oil (open

circles). Comparison with the Rayleigh—Plesset model (solid line).

Viscosity u = 0.485 Pas.

drive pressure amplitude

Physics of bubble oscillations

Werner Lauterborn and Thomas Kurz
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Figure 25. Sequence of measured steady state bubble oscillations
for different acoustic pressure amplitudes p,. Driving frequency
v, = 25kHz. (Reprinted with permission from T J Matula [125].
Copyright 1999 by The Royal Society.)
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G. Lemaitre, unpubl:gh %; 6 notebook cirea 1927.
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"Those solutions where the universe expands and

contracts successively while periodically reducing

itself to an atomic mass of the dimensions of the

solar system, have an indisputable charm and

make one think of the Phoenix of legend”



