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« Standard model of cosmology: a 9 parameter model based on GR

Hy Expansion rate
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A1, - Composition of the Universe

T - Small inhomogeneities

* Precision Cosmology: parameters known at the % level

 Fits a wide range of data
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* Nature of dark matter and dark energy: new type of matter or modified gravity?
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Why inflation: : ,'@,

« Despite its successes, the standard model of Cosmology has issues related
Yo initial conditions (horizon problem, flatness problem etfc ...)

 Postulating a phase of accelerated expansion in the early Universe (= cosmic
inflation) can fix these issues
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In the early Universe matter is described by QFT. Simplest QFT model compatible
with FLRW symmetries = scalar field (inflaton field)
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If the scalar field moves slowly (the potential is flat), then pressure is negative which, in
the context of GR, means accelerated expansion and, hence, inflation takes place.
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Inflation (usually) stops when the field reaches a part of the potential which
is no longer flat enough to support inflation; this happens in the vicinity of the
minimum of the potential
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Then, the field oscillates, decays and the decay products thermalize
..then the radiation dominated era starts ... Reheating phase




- Questions & open issues

Who is the inflaton field? Can it be the Higgs field? Relation with
high energy physics (SUSY, string theory, etfc ...)

Is it a single field scenario or a more complicated model (several scalar
fields, non minimal kinetic term, etc ...)

How did inflation start?

Reheating, preheating etc ...

Are we sure it is inflation? Alternatives to inflation ...
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Hamiltonian of the cosmological perturbations:
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two-mode squeezed state
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Quantum state of the CMB: a strongly two=

CMB anisotropy is the strongest
squeezed state ever produced in Nature
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= Are the perturbations quantum ¢ g p

JS. BISLLL

- The Wigner function is positive since the state
is Gaussian

- But the state is entangled and discord is large ...
- The very same paradox was studied by John

Bell at about the same time cosmic inflation
was invented ...
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EPR correlations and EPW distributions

Dedicated to Professor E. P, Wigner

It is known that with Bohm’s example of EPR correlations, involving
particles with spin, there is an irreducible non-locality. The non-locality
cannot be removed by the introduction of hypothetical variables unknown
to ordinary quantum mechanics. How is it with the original EPR example
involving two particles of zero spin? Here we will see that the Wigner phase
space distribution’ illuminates the problem.

"Cosmic inflation, quantum information and the pioneering role
of John Bell in Cosmology"”, Universe 5 (2019), arXiv:1904.00083



Open issues AR

Other important questions

«  The quantum-to-classical transition

« Can we obtain a direct observational signature of the quantum origin of the
perturbations?

« The role of decoherence. Attempts to write a master equation for
cosmological perturbations, impact for the quantum to classical
transition ...

« The quantum measurement problem in Cosmology. The quantum state
of perturbations is homogeneous and isotropic (e.g. it is invariant under
the translation operator). How do we produce a state which is not
homogeneous and isotropic?

« Can we use quantum perturbations to probe quantum mechanics itself?
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How to probe inflation? }'ﬁ

A

Inflation can be observationally probed by measuring correlations functions
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How to probe inflation? /'a{@

Inflation can be observationally probed by measuring correlations functions '
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How to probe inflation? /‘@«’ :
Inflation can be observationally probed by measuring correlations functions '
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L The observational status of

Planck Measurements

- Universe spatially flat:

- Adiabatic perturbations:

- Gaussian perturbations:

- Almost scale invariant power spectrum:

- Background of quantum gravitational waves:
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The observational status of i

Planck Measurements

- Universe spatially flat: Q. = —0.0405 077
- Adiabatic perturbations: 22500 € [0.985, 0.999]
L fle=—09+5
- Gaussian perturbations: 1 [ =-26+47
fortho = —38 £24

- Almost scale invariant power spectrum: ng = 0.9645 £ 0.0049
o4 T
- Background of quantum gravitational waves: r = 5 < 0.035

So far, all observations are consistent with single field scenarios




Planck: and the winners are .

Plateau inflationary models are the winners!
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J. Martin, C. Ringeval and V. Vennin, Phys. Dark Univ. 5-6 (2014) 75, arXiv:1303.3787

J. Martin, C. Ringeval, R. Trotta and V. Vennin, JCAP 1403 (2014) 039, arXiv1312.3529
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Recap

 Despite some issues, the ACDM is a very good model, explaining a wide
range of data

O Inflation completes this model, makes it much more consistent and provides
a convincing model for structure formation, in agreement with cosmological

observations

O According to inflation, structures are nothing but quantum fluctuations
amplified by gravitational instability and stretched to cosmological scales

O Inflation is the only situation in Physics where GR and QM are needed to
understand the theory and derive predictions and where, at the same time,
we have high accuracy data; can it be used to probe the interface between

GR and QM?
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Future (inflationary theory)

[ Physical nature of inflation. Which energy scale? Is inflation related to the
Higgs field? Do we deal with single field inflation or is the inflationary
mechanism more complicated?

d How did inflation start?

( Reheating: how did inflation stop? What is the coupling of the inflaton with
the rest of the world?

A Can we find a direct proof of the quantum origin of the perturbations?

[ Can inflation be useful for explaining other aspects of cosmology, eg
magnetogenesis, PBHs, ...



L Conclusions

Future (observations to further probe inflation)

O Primordial gravitational waves

- Produced during slow-roll inflation but not yet detected

- No general prediction (no lower bound); model-dependent

- Hope to detect the signal through CMB B-mode polarization (S4, LiteBIRD

satellite)

T
- Threshold r = = ~ 107 to be compared with 7staro ~ 2 —4 x 1077

- Important consequences:

- Energy scale of inflation

- First derivative of inflaton's potential
- Field excursion

- Model selection

- More on reheating

- Gravity must be quantized

- GW also produced during reheating (dif ferent amplitude and frequency)

direct detection?

Ultimate DECIGO
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Future (observations to further probe inflation)

O Primordial Non-Gaussianities

- Produced during (slow-roll) inflation thanks to non-linear terms in
perturbation theory but not yet detected

- No general prediction; model-dependent
- Single field: fy, ~ 1072

- More complicated models: larger signal [ fy, ~ O(1)] and, moreover, the
“structure” of the signal allows us to identify the underlying models

- Important since gives access to the next-to-leading order of perturbation
theory; window on new degrees of freedom in the early Universe

- Future CMB and LSS surveys; hope to reach: fy. ~ O(1)
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- Produced during (slow-roll) inflation thanks to non-linear terms in
perturbation theory but not yet detected

- No general prediction; model-dependent
- Single field: fy, ~ 1072

- More complicated models: larger signal [ fy, ~ O(1)] and, moreover, the
“structure” of the signal allows us to identify the underlying models

- Important since gives access to the next-to-leading order of perturbation
theory; window on new degrees of freedom in the early Universe

- Future CMB and LSS surveys; hope to reach: fy. ~ O(1)

Thank you for your attention




