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Hubble parameter:

This allows us to trace back 
the history of the Universe

w=p/ρ: equation of state 
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• Standard model of cosmology: a 9 parameter model based on GR

• Precision Cosmology: parameters known at the % level

• Fits a wide range of data
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Big Bang

• Despite its successes, the standard model of Cosmology has issues related 
to initial conditions (horizon problem, flatness problem etc …)

• Postulating a phase of accelerated expansion in the early Universe (= cosmic 
inflation) can fix these issues

Inflation

With inflation A and B are in causal contact
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Inflationary mechanism

Relativistic term

In the early Universe matter is described by QFT. Simplest QFT model compatible 
with FLRW symmetries = scalar field (inflaton field)

If the scalar field moves slowly (the potential is flat), then pressure is negative which, in 
the context of GR, means accelerated expansion and, hence, inflation takes place.



Inflation (usually) stops when the field reaches a part of the potential which 
is no longer flat enough to support inflation; this happens in the vicinity of the 
minimum of the potential

Stopping inflation: reheating epoch



Then, the field oscillates, decays and the decay products thermalize 
…then the radiation dominated era starts … Reheating phase

Inflation (usually) stops when the field reaches a part of the potential which 
is no longer flat enough to support inflation; this happens in the vicinity of the 
minimum of the potential

Stopping inflation: reheating epoch



Then, the field oscillates, decays and the decay products thermalize 
…then the radiation dominated era starts … Reheating phase

Inflation (usually) stops when the field reaches a part of the potential which 
is no longer flat enough to support inflation; this happens in the vicinity of the 
minimum of the potential
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Questions & open issues 

• Who is the inflaton field? Can it be the Higgs field? Relation with 
high energy physics (SUSY, string theory, etc …)

• Is it a single field scenario or a more complicated model (several scalar 
fields, non minimal kinetic term, etc …)

• How did inflation start?

• Reheating, preheating etc …

• Are we sure it is inflation? Alternatives to inflation …
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• Main idea: quantum fluctuations of
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fields during inflation amplified by
gravitational instability and stretched
by cosmic expansion

• Inflation not only solves the puzzles of 
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• In the early Universe, the perturbations are 
small so a perturbative approach is possible

• Two types of perturbations are produced 

• Scalar perturbations are characterized by a
one quantity: curvature perturbations

• In Fourier space, this is a collection of 
oscillators, each mode k being described by
a “position” and a momentum

Quantum perturbations 

- Gravitational waves

- Scalar perturbations



Hamiltonian of the cosmological perturbations:
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• The (pure) state of the system is a Gaussian
two-mode squeezed state

Quantum perturbations 

with

It is an entangled state



The cosmological two-mode squeezed state is (very!) strongly squeezed

Quantum state of the CMB: a strongly two-mode squeezed state

CMB anisotropy is the strongest 
squeezed state ever produced in Nature

~ 15 dB in the lab

> 500 dB inflation



- The Wigner function is positive since the state 
is Gaussian 

- But the state is entangled and discord is large …

- The very same paradox was studied by John 
Bell at about the same time cosmic inflation 
was invented …

“Cosmic inflation, quantum information and the pioneering role 
of John Bell in Cosmology”, Universe 5 (2019), arXiv:1904.00083

Are the perturbations quantum or classical?



Open issues

Other important questions

• The quantum-to-classical transition

• Can we obtain a direct observational signature of the quantum origin of the 
perturbations?

• The role of decoherence. Attempts to write a master equation for 
cosmological perturbations, impact for the quantum to classical
transition …

• The quantum measurement problem in Cosmology. The quantum state 
of perturbations is homogeneous and isotropic (e.g. it is invariant under 
the translation operator). How do we produce a state which is not 
homogeneous and isotropic?

• Can we use quantum perturbations to probe quantum mechanics itself?
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How to probe inflation?

Inflation can be observationally probed by measuring correlations functions 

Prediction: the spectral 
index should be close to 
one but different from 
one

related to

Power spectrum
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- Universe spatially flat:

- Adiabatic perturbations:

- Gaussian perturbations:

- Almost scale invariant power spectrum:

- Background of quantum gravitational waves:

The observational status of inflation

Planck Measurements

So far, all observations are consistent with single field scenarios



Planck: and the winners are …

Plateau inflationary models are the winners!

J. Martin, C. Ringeval and V. Vennin, Phys. Dark Univ. 5-6 (2014) 75, arXiv:1303.3787

J. Martin, C. Ringeval, R. Trotta and V. Vennin, JCAP 1403 (2014) 039, arXiv1312.3529

HI (Starobinsky model)
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Recap

Conclusions

 Despite some issues, the ΛCDM is a very good model, explaining a wide 
range of data

 Inflation completes this model, makes it much more consistent and provides 
a convincing model for structure formation, in agreement with cosmological 
observations

 According to inflation, structures are nothing but quantum fluctuations 
amplified by gravitational instability and stretched to cosmological scales

 Inflation is the only situation in Physics where GR and QM are needed to 
understand the theory and derive predictions and where, at the same time, 
we have high accuracy data; can it be used to probe the interface between 
GR and QM?



Future (inflationary theory)

Conclusions

 Physical nature of inflation. Which energy scale? Is inflation related to the 
Higgs field? Do we deal with single field inflation or is the inflationary 
mechanism more complicated? 

 How did inflation start? 

 Reheating: how did inflation stop? What is the coupling of the inflaton with 
the rest of the world?

 Can we find a direct proof of the quantum origin of the perturbations?

 Can inflation be useful for explaining other aspects of cosmology, eg
magnetogenesis, PBHs, …



Future (observations to further probe inflation)

Conclusions

 Primordial gravitational waves

- Produced during slow-roll inflation but not yet detected

- No general prediction (no lower bound); model-dependent

- Hope to detect the signal through CMB B-mode polarization (S4, LiteBIRD
satellite)

- Threshold                        to be compared with                       

- Important consequences:

- Energy scale of inflation
- First derivative of inflaton’s potential
- Field excursion
- Model selection
- More on reheating
- Gravity must be quantized

- GW also produced during reheating (different amplitude and frequency) 
direct detection?
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- More complicated models: larger signal [                   ]  and, moreover, the 
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Thank you for your attention


