

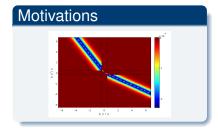
EFFECTIVE-FIELD THEORIES OF ANALOGUE GRAVITY

A. BIONDI M. L. CHIOFALO, M. MANNARELLI, S. TRABUCCO

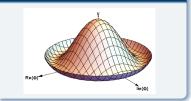
UNIVERSITY OF PISA

8 November 2023

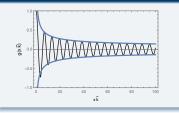
Introduction



Methodology



Results and Applications



Analogue Gravity

What is it?

Analogue Gravity is an approach to simulate the fields' propagation on top of a curved spacetime

The most well-known of these analogies is:

light waves in a curved spacetime

The metric is obtained:

Einstein equation

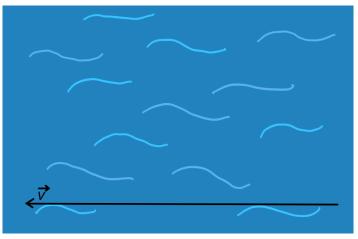
sound waves in a flowing fluid

Background

Flowing fluid

- ► c_s: speed of sound
- v: fluid's velocity

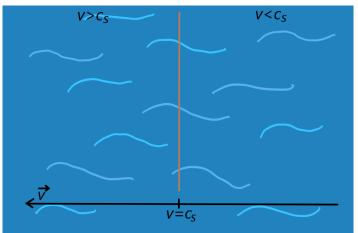
W. G. Unruh



Flowing fluid

- ► c_s: speed of sound
- v: fluid's velocity

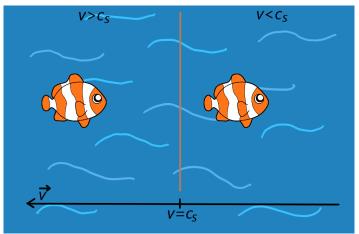
W. G. Unruh



Flowing fluid

- ► c_s: speed of sound
- v: fluid's velocity

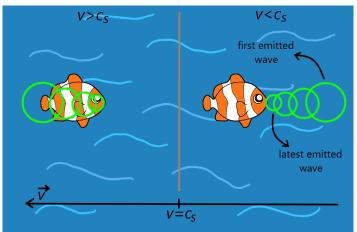
W. G. Unruh



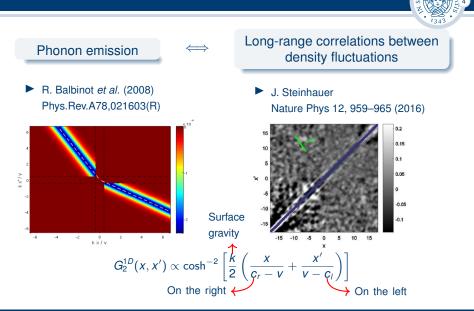
Flowing fluid

- ► c_s: speed of sound
- v: fluid's velocity

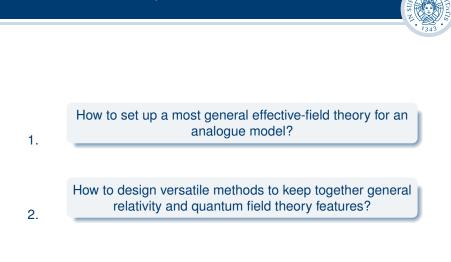
W. G. Unruh



Density-Density Correlation Function



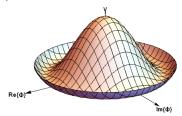
Our Research Questions



Effective-Field Theory for an Analogue Model,

Analog model with a relativistic BEC

 $\mu > m$



Effective Low Energy Phonon Lagrangian

Broken Symmetries:

- \blacktriangleright U(1), spontaneous
- Lorentz, explicit

Madelung: $\Phi = \frac{\rho}{\sqrt{2}} e^{i\theta}$ The superfluid's velocity is $\mathbf{v} = \frac{\hbar}{\mu} \nabla \theta$

$$\mathcal{L} = \frac{1}{2} \partial_{\nu} \rho \partial^{\nu} \rho + \frac{1}{2} \rho^{2} \partial_{\nu} \theta \partial^{\nu} \theta - \frac{\mu \rho^{2}}{4} \partial_{t} \theta - \frac{1}{2} (\frac{m^{2}}{4} - \mu^{2}) \rho^{2} - \frac{\lambda}{4} \rho^{4}$$
Chemical Mass potential of Φ

potential

The Most General BEC Effective Lagrangian

$$\mathcal{L}(\rho, \partial_{\mu}\rho, \partial_{\mu}\theta) \quad \begin{cases} \rho = \rho_{0} + \tilde{\rho} + ..\\ \theta = \theta_{0} + \tilde{\theta} + .. \end{cases}$$

- $\tilde{\rho}$: density fluctuation (Higgs)
- $\tilde{\theta}$: phonon field (Goldstone)

Assumptions:

1

- Background superflow velocity $\vec{v} = \vec{\nabla}\theta_0/\mu$ ($\hbar = 1$).
- The system is inviscid
- Local density approximation

General Lagrangian expansion

ALM # DICCLUT 8

We expand the action around the stationary point (ρ_0, θ_0)

 $\mathcal{L} = \underbrace{\mathcal{L}(\rho_{0}, \partial_{\mu}\rho_{0}, \partial_{\mu}\theta_{0})}_{\text{Eulero-Lagrange equation}} + \underbrace{\tilde{\rho}\left(\frac{\delta \mathcal{L}}{\delta\rho} - \partial_{\mu}\frac{\delta \mathcal{L}}{\delta\partial_{\mu}\rho}\right)\Big|_{\rho_{0},\theta_{0}}}_{\rho_{0},\theta_{0}} + \partial_{\mu}\tilde{\theta}\frac{\delta \mathcal{L}}{\delta\partial_{\mu}\theta}\Big|_{\rho_{0},\theta_{0}} + \mathcal{L}_{2} + \dots$

We consider $\mathcal{L}_{\rm eff} = \mathcal{L}_2$ in terms of $\tilde{\rho}$, $\tilde{\theta}$ and their products From the equation of motion

Leading order in p^{μ} $ilde{
ho} \simeq rac{1}{ ilde{m}^2} V^{\mu} \partial_{\mu} ilde{ heta}$

Next-to-leading order
in
$$p^{\mu}$$

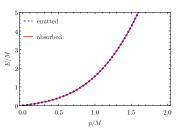
 $\tilde{\rho} \simeq \frac{1}{\tilde{m}^2} \left(1 - \frac{\Box}{\tilde{m}^2}\right) V^{\mu} \partial_{\mu} \tilde{\theta}$

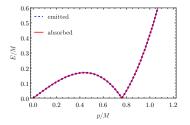
Phonon Dispersion Law

$$E_{\pm,\mathrm{lab}} \simeq \mathbf{v} \cdot \mathbf{p} \pm \left(c_s |\mathbf{p}| + rac{\mathcal{A}}{\mathcal{M}^2} |\mathbf{p}|^3
ight)$$
 Cut-of

Far from the horizon v = 0

Monotonic (A > 0)

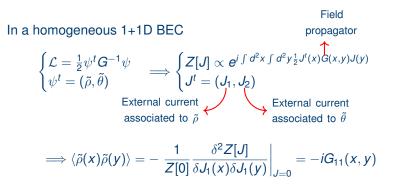




Non-Monotonic (A < 0)

I consider $|\mathcal{A}| = 1$ and $c_s = c/\sqrt{3}$

Density-Density Correlation Function



Results: Effective Lagrangian at NLO

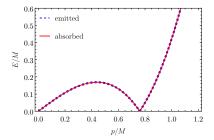
$$\mathcal{L} = \underbrace{\frac{1}{2}}_{A} \underbrace{\rho_0^2 \left(\eta^{\mu\nu} + \left(\frac{1}{c_s^2} - 1 \right) v^{\mu} v^{\nu} \right)}_{A} \partial_{\mu} \tilde{\theta} \partial_{\nu} \tilde{\theta}}_{A} - \underbrace{\frac{\rho_0^2}{8} \left(\frac{\gamma}{\mu} \left(\frac{1}{c_s^2} - 1 \right) \right)^2 v^{\mu} v^{\nu} \partial_{\mu} \tilde{\theta} \Box \partial_{\nu} \tilde{\theta}}_{B}.$$

• A: LO term ($\sim p^2$). It is the kinetic term \implies analogue metric

► B: NLO term (~ p⁴)

 $\mathcal{L}_{2} = \frac{1}{2} \partial_{\mu} \tilde{\rho} \partial^{\mu} \tilde{\rho} - \frac{\tilde{m}^{2}}{2} \tilde{\rho}^{2} + \frac{B^{2}}{2} \partial_{\mu} \tilde{\theta} \partial^{\mu} \tilde{\theta} + V^{\mu} \tilde{\rho} \partial_{\mu} \tilde{\theta} + (C_{1} \eta^{\mu\nu} + C_{2} V^{\mu} V^{\nu}) \partial_{\mu} \tilde{\rho} \partial_{\nu} \tilde{\theta}.$

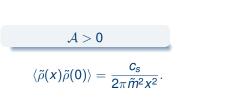
Non-monotonic dispersion law $\iff |C_1| > |B| \implies A < 0$

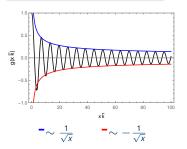


Non-monotonic dispersion law \implies Getting to a phase transition?

Results: Density-Density Correlation Function

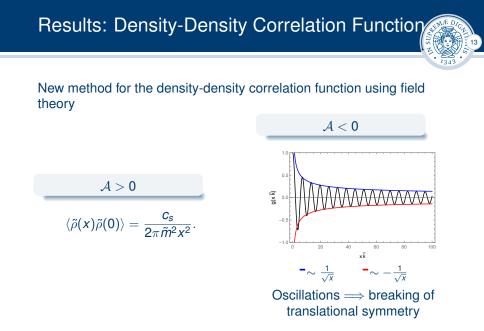
New method for the density-density correlation function using field theory





 $\mathcal{A} < \mathbf{0}$

 $\langle \tilde{
ho}(x) \tilde{
ho}(0)
angle \propto g(x ar{k})$



Conclusions

- Innovative approach to construct an analogue model with BEC
- Building of the phonon low energy effective Lagrangian at NLO in phonons' momentum
- Phonon dispersion law with p³ corrections has:
 - monotonic behaviour
 - non-monotonic behaviour
 - \implies translation-symmetry breaking
 - \implies phase transition to supersolid state (?)
- Density-density correlation function for a homogeneous BEC in (1+1)D for the system with:
 - monotonic dispersion law: new method! (see instead Haldane PhysRevLett.47.1840)
 - non-monotonic dispersion law: new physics!

Applications

- Calculate the density-density correlation function with
 - a horizon
 - current density approximation
- Calculate the phonon-condensate correlation function starting state of the system
- Study the phonons' dynamic in non-homogeneous systems with a horizon
- Mean field approximation => Local field, beyond mean-field approximation

Thank you for your attention!

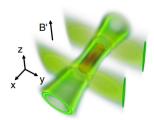
Speed of sound

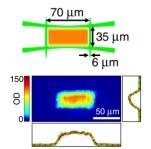
In the model $\lambda \Phi^4$

$$c_s^2 = \frac{\lambda \rho_0^2}{3\lambda \rho_0^2 + 2m^2}$$

- maximum when $\rho_0 \rightarrow \infty \implies c_s \rightarrow 1/\sqrt{3} \implies$ first sound
- minimum when $\rho_0 \rightarrow 0 \implies c_s \rightarrow 0 \implies$ normal phase

Optical-Box Trap





Steinhauer Experiment

