

LumiTracker the LHCb Lumi Telescope

Kazu Akiba, Johannes Albrecht, Federico Alessio, **Elena Dall'Occo**, Rosen Matev, David Rolf, Freek Sanders, Dirk Wiedner

3rd workshop on electromagnetic dipole moments of unstable particles 12/12/2023

The idea

concept design by Freek

- mini-telescope upstream of the VELO
- 6-8 hybrid Si pixel planes arranged in
- planes layout optimised for tracks from the luminous region
- rotation around z between 30-60 deg for better mechanical integration
- full length ~ 35 cm

Goal

- provide real-time luminosity measurement per bunch (independently of LHCb)
- Iuminous region monitoring
- contribute to offline luminosity measurement (integrated in global event stream)

Why?

- luminosity should be provided to the LHC every few seconds (~3s)
- it should be measured with a precision of order 10%
- it should be provided at all times even if LHCb is not taking data or is off
- the measurement should be stable in time
- LHC requires a luminosity measurement per bunch

complementary and providing additional measurement wrt Plume

beam telescopes

main tool to test and characterise novel sensor technologies reconstructing tracks at high rate

Goal

- use the LumiTracker as a telescope
- a Device Under Test (DUT) could be inserted in the middle of the telescope and replaced at TS
- powerful method to test new sensor + ASIC technologies and corresponding DAQ in LHC conditions

unique opportunity to test DUTs in LHC conditions

Timepix4 telescope in H8

The idea: where?

- optimal location and detector layout choices mainly based on:
 - detector occupancy
 - fraction of reconstructed tracks from material interactions
 - resolution of the luminous region
 - reconstruction efficiency for lumi region tracks

optimal location: z = -1250 mm and radius = 120 mm

expected fluence $< 2 \times 10^{15}$ 1 MeV n_{eq}/cm² for Run 4

Elena Dall'Occo

The idea: layout?

- layout optimised requiring a min of 4 hits per track
- planes arranged in two arms to balance track efficiency and resolution of lumi region tracks
- same number of planes (3 or 4) per arm for redundancy
- additional advantage: optimal pointing resolution in the middle of the telescope

optimal spacing: 10cm between the arms and 3cm between the planes within the same arm

How to measure luminosity?

Total instantaneous luminosity:

 $\mathscr{L} = \sum_{b=1}^{n_b} \mathscr{L}_b = n_b \langle \mathscr{L}_b \rangle$ mean bunch luminosity $\langle \mathscr{L}_b \rangle = \frac{\langle \mu \rangle f_r}{\sigma_{inel}} = \frac{\langle \mu_{vis} \rangle f_r}{\sigma_{vis}} = \frac{A}{\sigma_{vis}} f_r n_{tracks}$ with $\mu_{vis} = \varepsilon \mu$ $\sigma_{vis} = \varepsilon \sigma$ Linear method Based on counting the n_{h} = number of colliding bunch pairs number of tracks = LHC revolution frequency (11245 Hz) The mean number of tracks is proportional to the σ_{inel} = total inelastic pp cross-section number of interactions μ = number of inelastic pp collision per bunch crossing ${\cal E}$ = acceptance x efficiency of luminosity detector μ_{vis} = visible collision per bunch crossing What we want to measure! σ_{vis} = effective cross section calibration constant (from dedicated van der Meer scan)

Linearity

Stability check

Performance: lumi measurement

relative statistical uncertainty on per bunch luminosity vs integration time

 stat uncertainty on µ ~1% for 5s data taking at v=7.6

- LumiTracker occupancy for p-gas about a factor 10 lower than pp
- need longer integration times

Performance: reconstruction lumi region

- the longitudinal profile of the luminous region can be reconstructed
- the luminous region is approximately gaussian in x, y, z with $\sigma_{x,y}$ ~30 µm and σ_z ~63 mm
- lumi region resolution per track ~few mm

The idea: when?

LumiTracker v1

- proof of concept of a luminosity detector based on track counting
- each plane = 200 µm thick n-on-p
 HPK triple + 3 VeloPix
- DAQdboosed on VELO components: re-design of the cables ønly

Sensor Prototyping

Basic Unit: Triple Sensor 4.3 x 1.5 cm Both triples and singles produced Bonded to dedicated Tpx3 hybrid

Sensor

2022 JINST 17 P06038 2021 JINST 16 P07035 2021 JINST 16 P02029

Elena Dall'Occo

ASIC

VeloPix

- binary, data driven, zero suppressed readout
- capable to handle significantly higher rate than needed
- radiation hardness > 400 MRad (triple redundancy)
- given the low occupancy, expect only1-2/4 links active: power consumption reduced

Commonalities with TWOCRYST tracker?

FE

- 8 tiles
- 4 GBTx
- 8 hybrids

DAQ

- 4 VFB (not vacuum compatible)
- 2 OPB
- cables: LV, HV, interconnect, data

Services

- HV module
- LV module
- temperature and humidity sensors + ELMBs

Backend

- 2 TELL40s
- 1 EB node
- 2 EB interfaces
- 2 GPUs

Infrastructure

- water based cooling
- mechanics

12/12/2023

• maximum sensor temperature allowed 20 C

4 tubes prototype

- 2 solutions under discussion in 3D printed aluminum (0.5 mm wall thickness) with water flowing at 15 C
- both add ~1 mm of material: further development ongoing
- providing mechanical support for sensor and ASIC

- maximum sensor temperature allowed 20 C
- 2 solutions under discussion in 3D printed aluminum (0.5 mm wall thickness) with water flowing at 15 C
- both add ~1 mm of material: further development ongoing
- providing mechanical support for sensor and ASIC

4 tubes prototype

coldplate pins prototype

- maximum sensor temperature allowed 20 C
- 2 solutions under discussion in 3D printed aluminum (0.5 mm wall thickness) with water flowing at 15 C
- both add ~1 mm of material: further development ongoing
- providing mechanical support for sensor and ASIC

VeloPix assembly

(coldplate pins design)

GBTx assembly

(coldplate pins design)

////

Mechanics

cooling frame

- stainless steel cooling frame •
- additional central slot available for DUTs •

enclosure

- light sealed ٠
- full enclosure angled of ~5 deg wrt IP •
- adjustable position along z •
- 0.2 mm thick stainless steel •
- mylar window now added to the design ٠

enclosure with cooling frame

Cabling

Mechanics summary

- inspired by the Timepix4 telescope design
- whole telescope is tilted to optimise the acceptance for tracks from the luminous region
- mount on flange and wires mounting designed
- cooling frame + 0.2 mm thick enclosure in stainless steel

Weight of all concepts and components in grams (g) CAD	
The Mount	1360
The Enclosure	536
The Cooling frame	1950
The Cooling concepts	131
The wiring and electronics	395
Total	4372

57 60

404

246

Timeline

LumiTracker v1

- proof of concept of a luminosity detector based on track counting
- each plane = 200 µm thick n-on-p HPK triple + 3 VeloPix
- DAQ based on VELO components: re-design of the cables only
- fairly straightforward to install: could be done in a winter shutdown

LumiTracker v2

- each plane: Timepix4 (~195 ps TDC) + fast sensor
- timing the track has multiple purposes:
 - improve luminosity measurement by better discriminating the secondaries
 - measurement of satellites and ghost charges
 - measurement of Machine Induced Background
 - more accurate luminous region reconstruction by folding in timing
 - platform to test DUTs in the LHC: a DUT could be inserted in the middle of the telescope and replaced at TS

Timeline

Timepix4 chip 24.64 mm Pixel e Periph Wire b (can be

LumiTracker v2

Pixel electronics

Peripheral circuits

Wire bond extenders

(can be diced off)

- each plane: Timepix4 (~195 ps TDC) + fast sensor
- same mechanical structure as LumiTracker v1
- need to adapt the cooling plate/tubes to the Timepix4 size and shape
- DAQ to be fully developed

• first look at performance by smearing the true hit time by 150 ps

- tail in reconstructed distribution due to secondaries from material interaction
- resolution with strict selection on track pointing: σ ~70 ps, bias~-10 ps
- bias compatible with time of flight dispersion

LumiTracker v2: performance

- difficult to discriminate secondaries from primary tracks just by using timing or extrapolated position only
- ...but potentially exploitation of the correlation could be very powerful (WIP)

Outlook

 feasibility studies, projected performance and integration with LHCb described in LHCb-INT-2020-026

LumiTracker v1 todo:

- validate the recent developments in mechanics and cooling with simulation
- converge on the choice of cooling substrate (further development probably needed)
- procurement of the parts ongoing in collaboration with TWOCRYST, currently missing:
 - hybrids
 - cables (partly to be redesigned)
 - OPBs
 - HV+LV modules
 - temperature and humidity sensors + ELMBs
- aiming at installation during YETS 24/25 (subject to approval)

LumiTracker v2:

- very promising as luminometer and beam monitoring device
- could be exploited as platform for testing VELO upgrade 2 prototypes with LHC beam in Upgrade 1b

Hope to keep collaborating with TWOCRYST in the future!

Back Up

The idea: where?

Rotation of LumiTracker

- Freek suggested to move the LumiTracker at positive y and rotate to better fit the cables
- The rotation mechanically would work between 30 and 60 deg

edge of PLUME box

a pipe will stick out from here

Elena Dall'Occo

Optimisation of the angle

- if we keep the radial position constant, all the considerations done so far for the position are still valid
- the difference is that now we have staggering both in x and y

Optimisation of the angle

Elena Dall'Occo