Tracking long-lived particles at LHCb with the new software trigger

11/12/23 3rd workshop on electromagnetic dipole moments of unstable particles

Tracking long-lived particles at LHCb with the new software trigger Overview

- LHCb detector
- Trigger and tracking
- Long-lived particle vertex finding and fitting in HLT1
- Long-lived particle vertex finding and fitting in HLT2
- Topological track filtering
- Applications to strangeness physics
- Applications to BSM searches
- Conclusion

3rd workshop on electromagnetic dipole moments of unstable particles

11–12 Dec 2023 IJCLab Europe/Paris timezone

Introduction

- programme extending beyond this
- from Run 3 onwards
- This presents opportunities in particular for strangeness physics and searches for undiscovered particles, which may decay far from the interaction point
- By reconstructing decays in the region of LHCb's dipole magnet, the fiducial volume before the magnet, and the decays can be used for EDM/MDM measurements
- throughput and bandwidth

• The LHCb detector is optimised for the study of b- and c-hadron decays, with a physics

New types of decays can be studied thanks to the switch to a fully software-based trigger

available for decays increases by around four times compared to only considering decays

In order to trigger on these signatures, new techniques must be developed with a focus on

LHCb

- Forward arm spectrometer, $2 < \eta < 5$
- Particle tracking system is comprised of:
 - Silicon pixel vertex locator (VELO) around the interaction point
 - Silicon-strip upstream tracker (UT) in front of the largeaperture dipole magnet
 - Three scintillating fibre tracker (SciFi Tracker) stations
 downstream of the magnet
- Particle identification (PID) is provided by:
 - Two ring imaging Cherenkov detectors (RICH1 and RICH2) located upstream and downstream of the magnet respectively
 - Electromagnetic calorimeter (ECAL) and a hadronic calorimeter (HCAL)
 - Four stations of muon chambers (M2-5).

Tracking in LHCb

 Tracks reconstructed from segments in the different trackers, named according to where they have hits

M5

M4

M3

M2

 T tracks can be used to reconstruct long-lived particles such as strange hadrons, or undiscovered beyond the standard model (BSM) particles, that decay in the magnet region

ECAL HCAL

LHCb trigger

- For Run 3 LHCb has removed its hardware trigger
- Two-level software trigger: HLT1 (GPU) and HLT2 (CPU)
- Reduces data volume from 4 TB/s to 10 GB/s
- HLT1 provides a simplified reconstruction to reduce event rate by a factor 20
- HLT2 provides a full offline quality reconstruction to select signatures and reduce event rate by another factor 20
 - In general, only reconstructed objects belonging to the decay signature are persisted \rightarrow Real Time Analysis (RTA) of data

USER ANALYSIS

EVENTS

GB/s

LHCb trigger

- Algorithms and selections must meet strict throughput (events processed per unit time) and bandwidth (size of output data) requirements
- In particular, for decays in the magnet region there are three primary challenges which must be addressed:
 - Poor track momentum resolution
 - Extrapolation of trajectories through a strong, inhomogeneous magnetic field
 - Large track combinatorics

USER ANALYSIS

EVENTS

GB/s

Event topology $\Lambda_b^0 \to \Lambda[p\pi^-] \ J/\psi[\mu^+\mu^-]$ 2.5 m x axis UT 2×2 layers 0 S₀ VELO 5 m 2

HLT1 T tracks

- Runs on remaining SciFi segments after Long and Downstream track matching
- Preselection of tracks from geometrical considerations
- Uses empirical extrapolation track model with parametrisation obtained from simulation to fit vertices
- Events selected using a neural network that uses quality and kinematical variables of daughter tracks and vertex as input
- Reduces throughput by around 1.5%
- WIP

Extremely displaced vertex finding and fitting HLT2

- Flexibility of HLT2 can be exploited to require clear signature in signal decay reconstructed first to control throughput (e.g. $J/\psi \rightarrow \mu\mu$)
- Narrow opening angle of Λ and K_S^0 decay products used to reduce combinations in place of mass cuts
- Exploit linearity of tracks in *y-z* plane to reject track pairs that do not cross in the magnet region
- For vertex fitting, use detailed 5th-order Runge-Kutta extrapolation in first iteration, polynomial interpolation after as compromise between timing and accuracy
- Mass resolution dramatically improved by using *y-z* intersection instead of default point-of-closest approach (POCA) for vertex seed
- Further optimisations being investigated to simplify extrapolator to improve speed
- Mass resolution can be further improved by offline fitting

Extremely displaced vertex finding and fitting HLT2

- Output rates O(10 Hz) after vertexing T track and Long track combinations
- Currently deployed in trigger for $\Lambda_b^0 \to J/\psi \Lambda, B^0 \to J/\psi K_{\varsigma}^0,$ $J/\psi \to \Lambda \overline{\Lambda}$ decays
- Efficiencies shown after selections and vertexing wrt generated events where is $J/\psi \rightarrow \mu\mu$ reconstructed
- To be updated for 2024 conditions

True K_S^0 end vertex z [mm]

Topological track filtering HLT2

- Not all processes have clear signatures to reduce combinatorics
- Not possible to run reconstruction and extrapolate all T tracks in the event without significant throughput reduction
- Filter tracks before full reconstruction using two MVAs — gradient boosted BDTs from CatBoost library
- Use a BDT to filter single tracks, then use a BDT to filter pairs (vertex candidates) of remaining tracks
- Currently optimised for Λ and K_S^0
- Reduces impact on throughput and combinations by 70%-85% whilst maintaining around 70% of signal

• BDT variables are:

Single track: $p_{\rm T}$, $p_{\rm z}$, η , y, r

Track pair: Δy , Δr , sign $(t_y^1 \cdot t_y^2)$, Δt_y , Δt_x , y_{yz} , z_{yz}

- Currently deployed in trigger for $\Xi_c^0 \to \Lambda K^- \pi^+$, $\Xi_c^0 \to \Xi^- \pi^+$, $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$ decays
- Performance expected to improve in 2024 as closed VELO and UT will improve Long and Downstream tracking → less background

BSM prospects

- These techniques are being adapted for BSM LLP searches
- Complementary detector acceptance to searches using Long and Downstream tracks
- Dedicated triggers will extend acceptance of LHCb's tracking system to 7.5 m, lifetimes up to O(10 ns) in a region of little-to-no physics background
- Example channel $B^+ \to K^+ H' (\to \mu^+ \mu^-)$

BSM prospects

Dimuon invariant mass and mass

- m(LLP) < m(B) m(K) for decays in magnet region Could be improved offline using decay tree fit with *B* mass constraint

resolution in trigger shown for 5 values

 Example of how combinatorial background can be suppressed through dedicated MVA-based track filtering

Variables: $p_{\rm T}$, p_z , IP, $\chi^2_{\rm IP}$, $\Delta LL(p-\pi), \Delta LL(K-\pi),$ $\Delta LL(\mu - \pi)^{calo}, t_x, t_v$

Summary & conclusion

- The flexibility of LHCb's fully software trigger is being exploited to trigger on long-lived signatures
- This requires a dedicated vertex finding and fitting strategies, and topological track filtering to stay within tight throughput and bandwidth constraints
- This is being used to collect data for EDM/MDM measurements of strange baryons
- The same techniques are also being adapted for BSM particle searches

Thanks for listening