

## Physics opportunities with SM long-lived particles at LHCb

### Ziyi Wang

#### Università degli Studi e INFN Milano

(On behalf of the Working Groups)

**3rd workshop on EMDMs of unstable particles** 

2023/12/11

### **Measurement of EMDMs**

μ: magnetic dipole momentd: electric dipole moment



Electric and Magnetic Dipole Moments of spin- $\frac{1}{2}$  particles  $\delta = d\mu_N \frac{s}{2}, \ \mu = g\mu_N \frac{s}{2}$ 

$$\mathcal{H} = -\mu \cdot B - \delta \cdot E \xrightarrow{P} \mathcal{H} = -\mu \cdot B + \delta \cdot E$$
$$\mathcal{H} = -\mu \cdot B - \delta \cdot E \xrightarrow{T} \mathcal{H} = -\mu \cdot B + \delta \cdot E$$

• Non-zero EDM will violate P and T symmetry:

 $\checkmark$  *T* violation  $\leftrightarrow$  *CP* violation (if CPT holds)

- The contribution of the Standard Model to EDM is very small:
   ✓ CKM: highly suppressed by loop level (>3) interaction
  - ✓ QCD  $\overline{ heta}$  term: main SM contributors to the EDM,  $\overline{ heta} < 10^{-10}$ , limited by neutron EDM:  $d_n < 1.6 \times 10^{-26} e {
    m cm}$

 $\mathcal{L}_{CPV} = \mathcal{L}_{CKM} + \mathcal{L}_{\overline{\theta}} + \mathcal{L}_{BSM}^{eff}$ 

Very sensitive to BSM physics, large windows of opportunity for observing New Physics!

- MDM measurement of particle and anti-particle
  - ✓ CPT invariance test, test of low-energy QCD models

### Measurement of $\Lambda$ EDM/MDM

• Spin-polarization vector s of  $\Lambda$  can be extracted by the angular distribution of the decay  $\Lambda \rightarrow p\pi^-$  dN

$$\frac{\mathrm{d}N}{\mathrm{d}\Omega'} = 1 + \alpha \boldsymbol{s} \cdot \boldsymbol{k}$$

• Dynamics of the spin in an external magnetic field is given by the T-BMT equation



### Measurement of $\Lambda$ EDM/MDM



- Fixed target p-Be experiment at Fermilab
- Proton beam of 300 GeV
- $\sim 3 \times 10^6 \Lambda$  events
- Strong  $\Lambda$  production with  ${\sim}8\%$  polarization
- No  $\overline{\Lambda}$  polarization
- Measurement of the MDM of the  $\Lambda$  baryon

$$\mu_{\Lambda} = (-0.6138 \pm 0.0047)\mu_N$$

• Measurement of the EDM of the  $\Lambda$  baryon

$$d_{\Lambda} = (-3.0 \pm 7.4) \times 10^{-17} e \text{cm}$$

It is time to revisit these 40-year-old results!

PRD 23, 814 (1981), PRL 41, 1348 (1978) 2023/12/11

### Measurement of $\Lambda$ EDM/MDM at LHCb

- Interaction of EDMs and MDMs with an external electromagnetic filed produces a spin precession.
- Three elements are necessary for the measurement of this effect:
  - $\checkmark$  Source of polarized particles whose direction and polarization degree are known

 $\Rightarrow$  many ongoing analysis of the polarization measurement of b- and c-baryons in LHCb

 $\checkmark$  Intense electromagnetic field able to induce a sizable spin precession angle

 $\Rightarrow$  a dipole magnet providing an integrated field of about 4Tm

 ✓ A detector to measure the final polarization vector by analyzing the angular distribution of the particle decays.

 $\Rightarrow$  three tracking stations T1-T3 (or SciFi tracker for Upgrade I)

#### LHCb is able to preform the measurement of $\Lambda$ EDM/MDM

Most challenging part: first time to perform physics measurement with particles decaying at the end of magnetic file (poor resolution)

### Measurement of $\Lambda$ EDM/MDM via $\Lambda_b^0 \rightarrow \Lambda J/\psi$



•  $\Lambda$  decay angular distribution in  $\Lambda$  helicity frame  $(1/2 \rightarrow 1/2 \ 0)$ 

$$\frac{d\Gamma}{d\Omega}(\cos\theta_p,\phi_p,\vec{S}) \propto 1 + \alpha_A S_x \sin\theta_p \cos\phi_p + \alpha_A S_y \sin\theta_p \sin\phi_p + \alpha_A S_z \cos\theta_p$$

2023/12/11

### Measurement of $\Lambda$ EDM/MDM via $\Lambda_b^0 \rightarrow \Lambda J/\psi$

- Best channel to preform the first EDM/MDM measurement
  - Large production cross-section of  $\Lambda_b^0$  at LHCb
  - $\checkmark$  Triggered by  $J/\psi 
    ightarrow \mu^+\mu^-$  decays
  - $\checkmark$   $\Lambda$  produced with large longitudinal polarization (~100%) [LHCB-PAPER-2020-005]
- Reconstruct  $\Lambda$  decay after the LHCb magnet (6. 0~7. 0m) [CERN-LHCb-DP-2022-001]
- $\checkmark$  The first time to perform a physics measurement at the end of the magnetic field



### Measurement of $\Lambda$ EDM/MDM via $\Lambda^0_b \rightarrow \Lambda J/\psi$

 Ghost vertex: Trajectories, with two (consistent within track uncertainties) crossing points, are assigned with the wrong vertex



Resolution

[CERN-LHCb-DP-2022-001]

- ✓ Vertex resolution is improved by removing the ghost vertex
- $\checkmark$  The resolutions of  $p,\pi^-$  momentum improve after DTF ( $J/\psi$  and  $\Lambda$  mass constraints)



### Measurement of $\Lambda$ EDM/MDM via $\Lambda_b^0 \rightarrow \Lambda J/\psi$

- The polarization and first electromagnetic dipole moments measurements based on Run 1 and 2 data sets are ongoing
- The physics trigger line (HLT2) for  $\Lambda_b^0 \to \Lambda J/\psi$  (also  $\Lambda_b^0 \to K_S^0 J/\psi$ ) is ready for the next year data taking



### Measurement of $\Lambda$ EDM/MDM via inclusive $\Lambda_c^+ \rightarrow \Lambda + nh$

•  $\Lambda_b^0$  semi-leptonic decay  $\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_\mu + n(\pi^+ \pi^-)$ 

 $\checkmark$  larger branching fraction  $\rightarrow$  possible larger yield

 $\checkmark$  week decay  $\rightarrow$  polarized  $\Lambda_c^+$ , improve the sensitivity of  $\Lambda$  related parameters

•  $\Lambda_c^+ \rightarrow \Lambda + n\pi^{+/-}$ 

 $\checkmark$  week decay  $\rightarrow$  large longitudinal polarization ( ${\sim}80\%$ )



### Measurement of $\Lambda$ EDM/MDM via inclusive $\Lambda_c^+ \rightarrow \Lambda + nh$

• Estimation of signal yield (based on Run2 data sets)

| Decay channel                           | $egin{aligned} \Lambda_b^0 &	o \Lambda_c^+ \pi^+ \pi^- \mu^- \overline{ u}_\mu \ \Lambda_c^+ &	o \Lambda \pi^+ \end{aligned}$ | $egin{aligned} \Lambda_b^0 &	o \Lambda_c^+ \mu^- \overline{ u}_\mu \ \Lambda_c^+ &	o \Lambda \pi^+ \pi^+ \pi^- \end{aligned}$ | $egin{aligned} \Lambda_b^0 &	o \Lambda_c^+ \pi^+ \pi^- \mu^- \overline{ u}_\mu \ \Lambda_c^+ &	o \Lambda \pi^+ \pi^+ \pi^- \end{aligned}$ |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| expected yields<br>(w/o stripping eff.) | 55k                                                                                                                           | 160k                                                                                                                          | 59k                                                                                                                                       |

✓ A dedicated stripping line was performed in the 2023 re-stripping campaign

✓ Due the lack of T-Track information in Run 2, the efficiency of re-stripping line is very low (<0.1%) → HLT2 lines for Run 3 is in development

• The resolution can be improved by removing ghost vertex and applying DTF



Tianze's talk for Summer Student Presentation

Further studies of all the channels based on MC simulation is ongoing

#### 2023/12/11

### Measurement of $\Lambda$ EDM/MDM via $J/\psi \rightarrow \Lambda \overline{\Lambda}$



- Measure the EDM/MDM with two methods
- ✓ Direct method: spin-polarization precession in LHCb magnetic filed
- Indirect method: using CP-odd observable

Sensitivity study  

$$(\mathcal{L}_{\mathrm{int}} = 50 \mathrm{fb}^{-1})$$
 $B = \widehat{P}_{\Lambda} \cdot (\widehat{q}_p \times \widehat{q}_{\overline{p}}), | < B > | = 3.2 \times 10^{-3} \delta_{\Lambda}$ 

$$\checkmark$$
 Direct method:  $\sigma_{\mu}=1.5 imes10^{-4}\mu_{B}$ ,  $\sigma_{\delta}=2.0 imes10^{-18}e{
m cm}$ 

✓ Indirect method:  $\sigma_{\delta} = 1.3 \times 10^{-18} e \mathrm{cm}$ 

Current exp. limits  $\mu_{\Lambda} = (-0.6138 \pm 0.0047)\mu_{N}$  $d_{\Lambda} = (-3.0 \pm 7.4) \times 10^{-17} ecm$ 

- First test of CPT symmetry at  $10^{-4}$  level and 1 order of magnitude improvement on EDM sensitivity
- Will benefit a lot from an efficient HLT1 Downstream track trigger

### Measurement of $\Lambda$ EDM/MDM via $J/\psi \rightarrow \Lambda \overline{\Lambda}$

#### • The development of HLT2 trigger lines for Run 3 is ready



 $\checkmark$  Very preliminary results based on Run 3 MC simulation

 $\checkmark$  There is the ability to reconstruct the  $\Lambda$  from two T-Tracks

 $\checkmark$  Further studies are needed to improve the resolution and optimize the selection

### Source and production of $\Lambda$ (c-baryon decays)

Table 1: Dominant  $\Lambda$  production mechanisms from heavy baryon decays and estimated yields produced per fb<sup>-1</sup> at  $\sqrt{s} = 13$  TeV, shown separately for SL and LL topologies. The  $\Lambda$  baryons from  $\Xi^-$  decays, produced promptly in the pp collisions, are given in terms of the unmeasured production cross section. [\*]

| SL events                                        | $N_A/{ m fb}^{-1}~(	imes 10^{10})$ | LL events, $\varXi^-\to A\pi^-$   | $N_A/{ m fb}^{-1}~(	imes 10^{10})$            |
|--------------------------------------------------|------------------------------------|-----------------------------------|-----------------------------------------------|
| $\Xi_c^0 \to \Lambda K^- \pi^+$                  | 7.7                                | $\Xi_c^0\to \Xi^-\pi^+\pi^+\pi^-$ | 23.6                                          |
| $\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$      | 3.3                                | $\Xi_c^0 \to \Xi^- \pi^+$         | 7.1                                           |
| $\Xi_c^+ \to \Lambda K^- \pi^+ \pi^+$            | 2.0                                | $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$   | 6.1                                           |
| $\Lambda_c^+ \to \Lambda \pi^+$                  | 1.3                                | $\Lambda_c^+ \to \Xi^- K^+ \pi^+$ | 0.6                                           |
| $\Xi_c^0 \to \Lambda K^+ K^- \text{ (no } \phi)$ | 0.2                                | $\Xi_c^0 \to \Xi^- K^+$           | 0.2                                           |
| $\varXi^0_c \to A\phi(K^+K^-)$                   | 0.1                                | Prompt $\Xi^-$                    | $0.13 \times \sigma_{pp \to \Xi^-} \ [\mu b]$ |



• Trigger lines are ready for Run3:

 $\checkmark \Xi_c^0 \to \Xi^- (\to \Lambda \pi^-) \pi^+ \qquad \checkmark \Xi_c^0 \to \Lambda K^- \pi^+ \qquad \checkmark \Xi_c^+ \to \Xi^- \pi^+ \pi^+$ 

• And more in development:

 $\checkmark \Lambda_c^+ \to \Lambda \pi^- \pi^+ \pi^+ \qquad \checkmark \Xi_c^+ \to \Lambda K^- \pi^+ \pi^+ \qquad \checkmark \Xi_c^0 \to \Xi^- \pi^- \pi^+ \pi^+$ 

[\*] F. J. Botella, L. M. Garcia Martin, D. Marangotto, F. M. Vidal, A. Merli, N. Neri, A. Oyanguren and J. R. Vidal, Eur. Phys. J. C77, 181 (2017)

2023/12/11

### **Ongoing polarization analysis**

Expected signal yields and the sensitivity of polarization



2023/12/11

15

### Model independent analysis of $\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$

• Separate prompt and detached samples with discriminating variables in MVA



• Model independent fit strategy

 

 Adaptive binning (KDTreeBins, 20 bins)
 Partition-based clustering (k-means algorithm, 20 clusters)
 Density-based clustering with noise (DBSCAN algorithm, minPts=80, eps=0.028)
 [Sergio's talk in the 110<sup>th</sup> LHCb Week]

### $\Lambda$ baryon polarization dilution

• The Lambda polarization is much reduced in multiple-body decays [PRC 95, 054902 (2017)]

 $P_{\Lambda}=C\cdot P_{M}, C<1$ 

 $P_M$ : polarization of the mother particle

| Dec                | C                                               |      |
|--------------------|-------------------------------------------------|------|
| parity-conserving: | $^{1}/_{2}^{+} \rightarrow ^{1}/_{2}^{+} 0^{-}$ | -1/3 |
| parity-conserving: | $1/2^- \to 1/2^+ 0^-$                           | 1    |
| parity-conserving: | $^{3/2^{+}} \rightarrow ^{1/2^{+}} 0^{-}$       | 1/3  |
| parity-conserving: | $^{3/2^{-}} \rightarrow ^{1/2^{+}} 0^{-}$       | -1/5 |

• Interference of polarization of different decay chains for  $\Xi_c^0 o \Lambda K^- \pi^+$ 



### Λ baryon polarization dilution in $Ξ_c^0 \to ΛK^- π^+$



• Could improve the sensitivity if rule out the intermediate processes with small factors

#### Summary

Tracks that leave only hits after the magnet have never been used for

analysis at LHCb



- Opportunities:
  - $\checkmark\,$  Rich physical processes can be triggered by the TTracks
  - $\checkmark\,$  Many polarization analyses are work in progress
  - ✓ To push the boundary of experimental precision and Reduce the gap between theory and experiment
  - $\checkmark\,$  Observe new decay modes which are dominated by LLPs
- Challenge:
  - ✓ Poor momentum resolution → 20~30%
     (0.1% for Long tracks)
  - ✓ Long propagation distances in the magnet region make track extrapolation more difficult
  - $\checkmark\,$  Low vertex reconstruction efficiencies and resolution
  - ✓ Lack of RICHI2 for TTracks in Run 1-2 makes background distintion harder (some progress is on the way)

# Backup

### Map of EDM

The identification of the nature of the fundamental CP-violating mechanisms requires the study of EDMs in various systems



#### **Illustration of EDM status**



#### Many opportunities in charmed baryons

J. Phys. G: Nucl. Part. Phys. 47 (2020) 010501 2023/12/11

### The same performance from in $\Lambda_b^0 \to K_S^0 J/\psi$ process

Reconstruct Λ decay after the LHCb magnet (6. 0~7. 0m) [CERN-LHCb-DP-2022-001]

